Signal denoising with average sampling

被引:9
作者
Zhang, Qingyue [1 ,2 ]
Wang, Ling [3 ]
Sun, Wenchang [1 ,2 ]
机构
[1] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Tianjin Med Univ, Dept Physiol, Tianjin 300070, Peoples R China
基金
中国国家自然科学基金;
关键词
Sampling theorems; Average sampling; Signal denoising; BAND-LIMITED SIGNALS; LOCAL AVERAGES; RECONSTRUCTION; RECOVERY;
D O I
10.1016/j.dsp.2011.11.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on the theory of average sampling, we present a new algorithm to reconstruct bandlimited signals from sampled values in the presence of zero mean, independent and identically distributed random noises. Numerical results show that our algorithm has good performance on denoising. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 232
页数:7
相关论文
共 50 条
  • [41] Average sampling theorems for shift invariant subspaces
    Sun, WC
    Zhou, XW
    SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 2000, 43 (05): : 524 - 530
  • [42] Generalized average sampling and reconstruction for wavelet subspaces
    Yugesh S.
    Devaraj P.
    The Journal of Analysis, 2018, 26 (2) : 333 - 342
  • [43] Signal Denoising Based on Adaptive Fourier Decomposition
    Kizilkaya, Aydin
    Kirkbas, Ali
    Bogar, Esref
    2017 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA 2017), 2017, : 125 - 130
  • [44] Generalized average sampling in shift invariant spaces
    Kang, S.
    Kwon, K. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) : 70 - 78
  • [45] Average sampling theorems for shift invariant subspaces
    孙文昌
    周性伟
    Science in China(Series E:Technological Sciences), 2000, (05) : 524 - 530
  • [46] Sampling and reconstruction of bandpass signal
    Meng, XW
    ICSP '96 - 1996 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1996, : 80 - 82
  • [47] A Gyroscope Signal Denoising Method Based on Empirical Mode Decomposition and Signal Reconstruction
    Liu, Chenchen
    Yang, Zhiqiang
    Shi, Zhen
    Ma, Ji
    Cao, Jian
    SENSORS, 2019, 19 (23)
  • [48] Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization
    Chen, Po-Yu
    Selesnick, Ivan W.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (13) : 3464 - 3478
  • [49] A new signal denoising method based on double dictionary learning and moving ruler strategy
    Ma, Yunfei
    Jia, Xisheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (03)
  • [50] Multiscale dilated denoising convolution with channel attention mechanism for micro-seismic signal denoising
    Cai, Jianxian
    Duan, Zhijun
    Wang, Li
    Meng, Juan
    Yao, Zhenjing
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2024, 14 (04) : 883 - 908