Combining Numerical Weather Predictions and Satellite Data for PV Energy Nowcasting

被引:29
作者
Catalina, Alejandro [1 ]
Alaiz, Carlos M. [1 ]
Dorronsoro, Jose R. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Comp Engn, Madrid 28049, Spain
关键词
Satellites; Predictive models; Weather forecasting; Forecasting; Production; Atmospheric measurements; Data models; Photovoltaic energy; nowcasting; meteosat; support vector regression; numerical weather prediction (NWP); GLOBAL SOLAR-RADIATION; POWER; FORECASTS; MODEL;
D O I
10.1109/TSTE.2019.2946621
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The increasing presence of photovoltaic (PV) generation in the energy mix demands improved forecasting tools which can be updated in an almost continuous basis. Satellite-based information lends itself naturally to this purpose and here it is used to nowcast hourly PV energy production for horizons up to six hours over Peninsular Spain and two islands, Majorca in the Mediterranean Sea and Tenerife in the Atlantic Ocean. This paper compares a single model-based on same-day numerical weather prediction (NWP) with hourly refreshed models which either only use satellite-based measurements or which combine both NWP same-day forecasts and satellite data. As shown in the experiments, the satellite-NWP combination gives very good nowcasting results, clearly superior to those achievable separately by either approach.
引用
收藏
页码:1930 / 1937
页数:8
相关论文
共 34 条
  • [11] Fentis A, 2016, INT RENEW SUST ENERG, P1092, DOI 10.1109/IRSEC.2016.7983968
  • [12] Day-Ahead Hourly Forecasting of Power Generation From Photovoltaic Plants
    Gigoni, Lorenzo
    Betti, Alessandro
    Crisostomi, Emanuele
    Franco, Alessandro
    Tucci, Mauro
    Bizzarri, Fabrizio
    Mucci, Debora
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2018, 9 (02) : 831 - 842
  • [13] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [14] Solar energy assessment using remote sensing technologies
    Hammer, A
    Heinemann, D
    Hoyer, C
    Kuhlemann, R
    Lorenz, E
    Müller, R
    Beyer, HG
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 86 (03) : 423 - 432
  • [15] A new airmass independent formulation for the Linke turbidity coefficient
    Ineichen, P
    Perez, R
    [J]. SOLAR ENERGY, 2002, 73 (03) : 151 - 157
  • [16] Solar forecasting methods for renewable energy integration
    Inman, Rich H.
    Pedro, Hugo T. C.
    Coimbra, Carlos F. M.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (06) : 535 - 576
  • [17] Solar Power Prediction Based on Satellite Images and Support Vector Machine
    Jang, Han Seung
    Bae, Kuk Yeol
    Park, Hong-Shik
    Sung, Dan Keun
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2016, 7 (03) : 1255 - 1263
  • [18] Kleissl J, 2013, SOLAR ENERGY FORECASTING AND RESOURCE ASSESSMENT, P1
  • [19] An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
    Linares-Rodriguez, Alvaro
    Antonio Ruiz-Arias, Jose
    Pozo-Vazquez, David
    Tovar-Pescador, Joaquin
    [J]. ENERGY, 2013, 61 : 636 - 645
  • [20] Lorenz E., 2014, P 29 EUR PHOT SOL EN, P22