A Lyapunov-type inequality with the Katugampola fractional derivative

被引:25
作者
Lupinska, Barbara [1 ]
Odzijewicz, Tatiana [2 ]
机构
[1] Univ Bialystok, Fac Math & Comp Sci, Bialystok, Poland
[2] Warsaw Sch Econ, Dept Math & Math Econ, Bialystok, Poland
关键词
fractional calculus; fractional differential equations; Katugampola derivative; Lyapunov inequality; STABILITY;
D O I
10.1002/mma.4782
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the higher order fractional differential equation with derivative defined in the sense of Katugampola. We present some equivalent integral form of the considered boundary value problem and using properties of an appropriateGreen function and prove fractional counterpart of the Lyapunov inequality.
引用
收藏
页码:8985 / 8996
页数:12
相关论文
共 32 条
  • [1] Generalized Fractional Integral Inequalities for Continuous Random Variables
    Akkurt, Abdullah
    Kacar, Zeynep
    Yildirim, Huseyin
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2015, 2015
  • [2] Almeida R., 2015, Computational methods in the fractional calculus of variations
  • [3] Variational Problems Involving a Caputo-Type Fractional Derivative
    Almeida, Ricardo
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 276 - 294
  • [4] [Anonymous], 2006, THEORY APPL FRACTION
  • [5] On Lyapunov inequality in stability theory for Hill's equation on time scales
    Atici, FM
    Guseinov, GS
    Kaymakcalan, B
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (06) : 603 - 620
  • [6] Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Zeng, Sheng-Da
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 99 - 105
  • [7] Lyapunov inequalities for time scales
    Bohner, M
    Clark, S
    Ridenhour, J
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (01) : 61 - 77
  • [8] Brown RC, 2000, SERVEY MATH INEQUALI, P1
  • [9] Maximum principles for time-fractional Caputo-Katugampola diffusion equations
    Cao, Liang
    Kong, Hua
    Zeng, Sheng-Da
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 2257 - 2267
  • [10] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291