Effects of stress on lithium transport in amorphous silicon electrodes for lithium-ion batteries

被引:64
作者
Pan, Jie [1 ]
Zhang, Qinglin [1 ,2 ]
Li, Juchuan [1 ]
Beck, Matthew J. [1 ,3 ]
Xiao, Xingcheng [2 ]
Cheng, Yang-Tse [1 ]
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
[2] Gen Motors Global Res & Dev Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA
[3] Univ Kentucky, Ctr Computat Sci, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Lithium ion battery; Stress; Diffusion; Silicon; ab initio molecular dynamics; Potentiostatic intermittent titration technique; TOTAL-ENERGY CALCULATIONS; IN-SITU MEASUREMENTS; 1ST PRINCIPLES; ELECTROCHEMICAL LITHIATION; NEGATIVE ELECTRODE; THIN-FILMS; DIFFUSION; LI; ANODES; SIMULATIONS;
D O I
10.1016/j.nanoen.2015.02.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon, as a promising electrode material for high energy density lithium ion batteries, experiences large strains and stresses during lithiation and delithation. The coupling effect between stress and lithium diffusion leads to a grand challenge to optimizing the design of Si electrodes with high capacity and high rate capability, particularly considering the amorphization of Si during initial cycles. In this study, we established a relationship between stress and the diffusion coefficients of Li in amorphous Si by ab initio molecular dynamics calculations (AIMD). The prediction from AIMD was validated by the potentiostatic intermittent titration measurements. Our results showed that two Li diffusion mechanisms can operate depending on the stress state. Specifically, the stress can increase Li diffusion either through increasing free volume under tension or by changing local structure under compression. However, within the range of stress generated during the lithiation and delithation process, diffusion coefficients are expected to vary by only one order of magnitude. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 54 条
  • [1] Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution
    Balke, Nina
    Jesse, Stephen
    Kim, Yoongu
    Adamczyk, Leslie
    Tselev, Alexander
    Ivanov, Ilia N.
    Dudney, Nancy J.
    Kalinin, Sergei V.
    [J]. NANO LETTERS, 2010, 10 (09) : 3420 - 3425
  • [2] Reaction of Li with alloy thin films studied by in situ AFM
    Beaulieu, LY
    Hatchard, TD
    Bonakdarpour, A
    Fleischauer, MD
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) : A1457 - A1464
  • [3] ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX
    BOUKAMP, BA
    LESH, GC
    HUGGINS, RA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) : 725 - 729
  • [4] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [5] Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes
    Chan, Candace K.
    Patel, Reken N.
    O'Connell, Michael J.
    Korgel, Brian A.
    Cui, Yi
    [J]. ACS NANO, 2010, 4 (03) : 1443 - 1450
  • [6] First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon
    Chan, Maria K. Y.
    Wolverton, C.
    Greeley, Jeffrey P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (35) : 14362 - 14374
  • [7] Controlling Diffusion of Lithium in Silicon Nanostructures
    Chan, Tzu-Liang
    Chelikowsky, James R.
    [J]. NANO LETTERS, 2010, 10 (03) : 821 - 825
  • [8] Ab initio simulations of liquid semiconductors using the pseudopotential-density functional method
    Chelikowsky, JR
    Derby, JJ
    Godlevsky, VV
    Jain, M
    Raty, JY
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (41) : R817 - R854
  • [9] First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations
    Chevrier, V. L.
    Zwanziger, J. W.
    Dahn, J. R.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 496 (1-2) : 25 - 36
  • [10] First principles studies of silicon as a negative electrode material for lithium-ion batteries
    Chevrier, V. L.
    Zwanziger, J. W.
    Dahn, J. R.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2009, 87 (06) : 625 - 632