ON ONE DIMENSIONAL QUANTUM ZAKHAROV SYSTEM

被引:19
作者
Jiang, Jin-Cheng [1 ]
Lin, Chi-Kun [2 ,3 ]
Shao, Shuanglin [2 ,3 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30013, Taiwan
[2] Xian Jiaotong Liverpool Univ, Dept Math Sci, SIP, Suzhou 215123, Jiangsu, Peoples R China
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Quantum Zakharov system; one dimensional; Cauchy problem; local well-posedness; low regularity; 4TH-ORDER SCHRODINGER-EQUATIONS; GLOBAL WELL-POSEDNESS; REGULARITY;
D O I
10.3934/dcds.2016040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the properties of one dimensional quantum Zakharov system which describes the nonlinear interaction between the quantum Langmuir and quantum ion-acoustic waves. The system (1a)-(1b) with initial data (E(0), n(0), partial derivative(t)n(0)) is an element of H-k circle plus H-l circle plus Hl-2 is local well-posedness in low regularity spaces (see Theorem 1.1 and Figure 1). Especially, the low regularity result for k satisfies -3/4 < k <= -1/4 is obtained by using the key observation that the convoluted phase function is convex and careful bilinear analysis. The result can not be obtained by using only Strichartz inequalities for "Schrodinger" waves.
引用
收藏
页码:5445 / 5475
页数:31
相关论文
共 21 条
[1]   EQUATIONS OF LANGMUIR TURBULENCE AND NONLINEAR SCHRODINGER-EQUATION - SMOOTHNESS AND APPROXIMATION [J].
ADDED, H ;
ADDED, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 79 (01) :183-210
[2]   On the 2D Zakharov system with L2 Schrodinger data [J].
Bejenaru, I. ;
Herr, S. ;
Holmer, J. ;
Tataru, D. .
NONLINEARITY, 2009, 22 (05) :1063-1089
[3]   Convolutions of singular measures and applications to the Zakharov system [J].
Bejenaru, Ioan ;
Herr, Sebastian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (02) :478-506
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P107
[6]  
Bourgain J., 1996, INT MATH RES NOTICES, P515
[7]   Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems [J].
Colliander, James ;
Holmer, Justin ;
Tzirakis, Nikolaos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4619-4638
[8]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[9]   Global well-posedness and the classical limit of the solution for the quantum Zakharov system [J].
Guo, Yanfeng ;
Zhang, Jingjun ;
Guo, Boling .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (01) :53-68
[10]   Quantum and classical dynamics of Langmuir wave packets [J].
Haas, F. ;
Shukla, P. K. .
PHYSICAL REVIEW E, 2009, 79 (06)