Atrophy subtypes in prodromal Alzheimer's disease are associated with cognitive decline

被引:106
作者
ten Kate, Mara [1 ,2 ]
Dicks, Ellen [1 ,2 ]
Visser, Pieter Jelle [1 ,2 ,3 ]
van der Flier, Wiesje M. [1 ,2 ,4 ]
Teunissen, Charlotte E. [5 ,6 ]
Barkhof, Frederik [7 ,8 ,9 ]
Scheltens, Philip [1 ,2 ]
Tijms, Betty M. [1 ,2 ]
机构
[1] Vrije Univ Amsterdam Med Ctr, Alzheimer Ctr, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam Med Ctr, Dept Neurol, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[3] Maastricht Univ, Sch Mental Hlth & Neurosci, Dept Psychiat & Neuropsychol, Maastricht, Netherlands
[4] Vrije Univ Amsterdam Med Ctr, Dept Epidemiol & Biostat, Amsterdam, Netherlands
[5] Vrije Univ Amsterdam Med Ctr, Neurosci Amsterdam, Neurochem Lab, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Neurosci Amsterdam, Dept Clin Chem, Biobank, Amsterdam, Netherlands
[7] Vrije Univ Amsterdam Med Ctr, Dept Radiol & Nucl Med, Neurosci Campus Amsterdam, Amsterdam, Netherlands
[8] UCL, Inst Neurol, London, England
[9] UCL, Inst Healthcare Engn, London, England
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; non-negative matrix factorization; mild cognitive impairment; disease heterogeneity; prognosis; NEUROIMAGING INITIATIVE ADNI; BRAIN ATROPHY; PATTERNS; HETEROGENEITY; TRAJECTORIES; IMPAIRMENT; MODEL;
D O I
10.1093/brain/awy264
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Alzheimer's disease is a heterogeneous disorder. Understanding the biological basis for this heterogeneity is key for developing personalized medicine. We identified atrophy subtypes in Alzheimer's disease dementia and tested whether these subtypes are already present in prodromal Alzheimer's disease and could explain interindividual differences in cognitive decline. First we retrospectively identified atrophy subtypes from structural MRI with a data-driven cluster analysis in three datasets of patients with Alzheimer's disease dementia: discovery data (dataset 1: n = 299, age = 67 +/- 8, 50% female), and two independent external validation datasets (dataset 2: n = 181, age = 66 +/- 7, 52% female; dataset 3: n = 227, age = 74 +/- 8, 44% female). Subtypes were compared on clinical, cognitive and biological characteristics. Next, we classified prodromal Alzheimer's disease participants (n = 603, age = 72 +/- 8, 43% female) according to the best matching subtype to their atrophy pattern, and we tested whether subtypes showed cognitive decline in specific domains. In all Alzheimer's disease dementia datasets we consistently identified four atrophy subtypes: (i) medial-temporal predominant atrophy with worst memory and language function, older age, lowest CSF tau levels and highest amount of vascular lesions; (ii) parieto-occipital atrophy with poor executive/attention and visuospatial functioning and high CSF tau; (iii) mild atrophy with best cognitive performance, young age, but highest CSF tau levels; and (iv) diffuse cortical atrophy with intermediate clinical, cognitive and biological features. Prodromal Alzheimer's disease participants classified into one of these subtypes showed similar subtype characteristics at baseline as Alzheimer's disease dementia subtypes. Compared across subtypes in prodromal Alzheimer's disease, the medial-temporal subtype showed fastest decline in memory and language over time; the parieto-occipital subtype declined fastest on executive/attention domain; the diffuse subtype in visuospatial functioning; and the mild subtype showed intermediate decline in all domains. Robust atrophy subtypes exist in Alzheimer's disease with distinct clinical and biological disease expression. Here we observe that these subtypes can already be detected in prodromal Alzheimer's disease, and that these may inform on expected trajectories of cognitive decline.
引用
收藏
页码:3443 / 3456
页数:14
相关论文
共 34 条
[1]   Amyloid biomarkers in Alzheimer's disease [J].
Blennow, Kai ;
Mattsson, Niklas ;
Scholl, Michael ;
Hansson, Oskar ;
Zetterberg, Henrik .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2015, 36 (05) :297-309
[2]   Heterogeneity of Regional Brain Atrophy Patterns Associated with Distinct Progression Rates in Alzheimer's Disease [J].
Byun, Min Soo ;
Kim, Song E. ;
Park, Jinsick ;
Yi, Dahyun ;
Choe, Young Min ;
Sohn, Bo Kyung ;
Choi, Hyo Jung ;
Baek, Hyewon ;
Han, Ji Young ;
Woo, Jong Inn ;
Lee, Dong Young .
PLOS ONE, 2015, 10 (11)
[3]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[4]   Heterogeneity of neuroanatomical patterns in prodromal Alzheimer's disease: links to cognition, progression and biomarkers [J].
Dong, Aoyan ;
Toledo, Jon B. ;
Honnorat, Nicolas ;
Doshi, Jimit ;
Varol, Erdem ;
Sotiras, Aristeidis ;
Wolk, David ;
Trojanowski, John Q. ;
Davatzikos, Christos .
BRAIN, 2017, 140 :735-747
[5]   Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Hampel, Harald ;
Molinuevo, Jose Luis ;
Blennow, Kaj ;
Dekosky, Steven T. ;
Gauthier, Serge ;
Selkoe, Dennis ;
Bateman, Randall ;
Cappa, Stefano ;
Crutch, Sebastian ;
Engelborghs, Sebastiaan ;
Frisoni, Giovanni B. ;
Fox, Nick C. ;
Galasko, Douglas ;
Habert, Marie-Odile ;
Jicha, Gregory A. ;
Nordberg, Agneta ;
Pasquier, Florence ;
Rabinovici, Gil ;
Robert, Philippe ;
Rowe, Christopher ;
Salloway, Stephen ;
Sarazin, Marie ;
Epelbaum, Stephane ;
de Souza, Leonardo C. ;
Vellas, Bruno ;
Visser, Pieter J. ;
Schneider, Lon ;
Stern, Yaakov ;
Scheltens, Philip ;
Cummings, Jeffrey L. .
LANCET NEUROLOGY, 2014, 13 (06) :614-629
[6]   Distinct subtypes of Alzheimer's disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications [J].
Ferreira, Daniel ;
Verhagen, Chloe ;
Andres Hernandez-Cabrera, Juan ;
Cavallin, Lena ;
Guo, Chun-Jie ;
Ekman, Urban ;
Muehlboeck, J-Sebastian ;
Simmons, Andrew ;
Barroso, Jose ;
Wahlund, Lars-Olof ;
Westman, Eric .
SCIENTIFIC REPORTS, 2017, 7
[7]   A flexible R package for nonnegative matrix factorization [J].
Gaujoux, Renaud ;
Seoighe, Cathal .
BMC BIOINFORMATICS, 2010, 11
[8]  
Hwang Jihye, 2016, Alzheimers Dement (Amst), V2, P58, DOI 10.1016/j.dadm.2015.11.008
[9]   The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods [J].
Jack, Clifford R., Jr. ;
Bernstein, Matt A. ;
Fox, Nick C. ;
Thompson, Paul ;
Alexander, Gene ;
Harvey, Danielle ;
Borowski, Bret ;
Britson, Paula J. ;
Whitwell, Jennifer L. ;
Ward, Chadwick ;
Dale, Anders M. ;
Felmlee, Joel P. ;
Gunter, Jeffrey L. ;
Hill, Derek L. G. ;
Killiany, Ron ;
Schuff, Norbert ;
Fox-Bosetti, Sabrina ;
Lin, Chen ;
Studholme, Colin ;
DeCarli, Charles S. ;
Krueger, Gunnar ;
Ward, Heidi A. ;
Metzger, Gregory J. ;
Scott, Katherine T. ;
Mallozzi, Richard ;
Blezek, Daniel ;
Levy, Joshua ;
Debbins, Josef P. ;
Fleisher, Adam S. ;
Albert, Marilyn ;
Green, Robert ;
Bartzokis, George ;
Glover, Gary ;
Mugler, John ;
Weiner, Michael W. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (04) :685-691
[10]   Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers [J].
Jack, Clifford R., Jr. ;
Knopman, David S. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Weiner, Michael W. ;
Aisen, Paul S. ;
Shaw, Leslie M. ;
Vemuri, Prashanthi ;
Wiste, Heather J. ;
Weigand, Stephen D. ;
Lesnick, Timothy G. ;
Pankratz, Vernon S. ;
Donohue, Michael C. ;
Trojanowski, John Q. .
LANCET NEUROLOGY, 2013, 12 (02) :207-216