Unique weak solutions of the magnetohydrodynamic equations with fractional dissipation

被引:7
作者
Dai, Yichen [1 ,2 ]
Ji, Ruihong [3 ]
Wu, Jiahong [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2020年 / 100卷 / 07期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Littlewood-Paley; local solution; magnetohydrodynamic equations; uniqueness; RESISTIVE MHD EQUATIONS; GLOBAL REGULARITY; LOCAL EXISTENCE; 2D; SYSTEM;
D O I
10.1002/zamm.201900290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper examines the existence and uniqueness of weak solutions to the d-dimensional magnetohydrodynamic (MHD) equations with fractional dissipation (-Delta)(alpha)upsilon and fractional magnetic diffusion (-Delta)(beta)b. The aim is at the uniqueness of weak solutions in the weakest possible inhomogeneous Besov spaces. We establish the local existence and uniqueness in the functional setting u is an element of L-infinity(0T;B-2,1(d/2-2 alpha+1)(R-d)) and b is an element of L-infinity (0,T;B-2,1(D/2) R-d))when alpha > 1/2, beta >= 0 and alpha + beta >= 1. The case when alpha = 1 with nu > 0 and eta = 0 has previously been studied in [7, 19]. However, their approaches can not be directly extended to the fractional case when alpha < 1 due to the breakdown of a bilinear estimate. By decomposing the bilinear term into different frequencies, we are able to obtain a suitable upper bound on the bilinear term for alpha < 1, which allows us to close the estimates in the aforementioned Besov spaces.
引用
收藏
页数:20
相关论文
共 32 条
[1]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[2]  
[Anonymous], 2011, FOURIER ANAL NONLINE
[3]  
[Anonymous], 2012, LITTLEWOOD PALEY THE
[4]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[5]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[6]   The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion [J].
Cao, Chongsheng ;
Regmi, Dipendra ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2661-2681
[7]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[8]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[9]   Global Regularity for the 2D MHD Equations with Partial Hyper-resistivity [J].
Dong, Bo-Qing ;
Li, Jingna ;
Wu, Jiahong .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (14) :4261-4280
[10]   Global Regularity and Time Decay for the 2D Magnetohydrodynamic Equations with Fractional Dissipation and Partial Magnetic Diffusion [J].
Dong, Bo-Qing ;
Jia, Yan ;
Li, Jingna ;
Wu, Jiahong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (04) :1541-1565