Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength

被引:52
作者
Giles, Stephen A. [1 ]
Sengupta, Debasis [1 ]
Broderick, Scott R. [2 ]
Rajan, Krishna [2 ]
机构
[1] CFD Res Corp, 6820 Moquin Dr NW, Huntsville, AL 35806 USA
[2] Univ Buffalo, Dept Mat Design & Innovat, 120 Bonner Hall, Buffalo, NY 14260 USA
关键词
PRINCIPAL-ELEMENT ALLOYS; MECHANICAL-PROPERTIES; SOLID-SOLUTION; WEAR-RESISTANCE; GRAIN-SIZE; MICROSTRUCTURE; OPTIMIZATION; PREDICTION; DESIGN; FCC;
D O I
10.1038/s41524-022-00926-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Refractory high-entropy alloys (RHEAs) show significant elevated-temperature yield strengths and have potential to use as high-performance materials in gas turbine engines. Exploring the vast RHEA compositional space experimentally is challenging, and a small fraction of this space has been explored to date. This work demonstrates the development of a state-of-the-art machine learning framework coupled with optimization methods to intelligently explore the vast compositional space and drive the search in a direction that improves high-temperature yield strengths. Our yield strength model is shown to have a significantly improved predictive accuracy relative to the state-of-the-art approach, and also provides inherent uncertainty quantification through the use of repeated k-fold cross-validation. Upon developing and validating a robust yield strength prediction model, the coupled framework is used to discover RHEAs with superior high temperature yield strength. We have shown that RHEA compositions can be customized to have maximum yield strength at a specific temperature.
引用
收藏
页数:11
相关论文
共 66 条
[1]   Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy [J].
Asghari-Rad, Peyman ;
Sathiyamoorthi, Praveen ;
Bae, Jae Wung ;
Moon, Jongun ;
Park, Jeong Min ;
Zargaran, Alireza ;
Kim, Hyoung Seop .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 744 :610-617
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys [J].
Chen, H. ;
Kauffmann, A. ;
Laube, S. ;
Choi, I. -C. ;
Schwaiger, R. ;
Huang, Y. ;
Lichtenberg, K. ;
Mueller, F. ;
Gorr, B. ;
Christ, H. -J. ;
Heilmaier, M. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (03) :772-781
[5]   Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [J].
Chen, TK ;
Shun, TT ;
Yeh, JW ;
Wong, MS .
SURFACE & COATINGS TECHNOLOGY, 2004, 188 :193-200
[6]   Six decades of the Hall-Petch effect - a survey of grain-size strengthening studies on pure metals [J].
Cordero, Z. C. ;
Knight, B. E. ;
Schuh, C. A. .
INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (08) :495-512
[7]   High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions [J].
Coury, Francisco G. ;
Clarke, Kester D. ;
Kiminami, Claudio S. ;
Kaufman, Michael J. ;
Clarke, Amy J. .
SCIENTIFIC REPORTS, 2018, 8
[8]   Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys [J].
Couzinie, J. -P. ;
Senkov, O. N. ;
Miracle, D. B. ;
Dirras, G. .
DATA IN BRIEF, 2018, 21 :1622-1641
[9]   Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys [J].
Fazakas, E. ;
Zadorozhnyy, V. ;
Varga, L. K. ;
Inoue, A. ;
Louzguine-Luzgin, D. V. ;
Tian, Fuyang ;
Vitos, L. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 47 :131-138
[10]  
FERRI FJ, 1994, MACH INTELL PATT REC, V16, P403