Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons

被引:448
作者
Renganathan, M
Cummins, TR
Waxman, SG
机构
[1] Yale Univ, Sch Med, Dept Neurol, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Paralyzed Vet Amer, Eastern Paralyzed Vet Assoc Neurosci Res Ctr, New Haven, CT 06510 USA
[3] Vet Affairs Connecticut Healthcare Ctr, Rehabil Res Ctr, West Haven, CT 06516 USA
关键词
D O I
10.1152/jn.2001.86.2.629
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Na(v)1.8 (+/+) and (-/-) small DRG neurons maintained for 2-8 h in vitro to examine the role of sodium channel Na(v)1.8 (alpha -NS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Na(v)1.8 (+/+) and (-/-) DRG neurons, there were significant differences in action potential electrogenesis. Most Na(v)1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Na(v)1.8 (-/-) neurons produce smaller graded responses. The peak of the response was significantly reduced in Na(v)1.8 (-/-) neurons [31.5 +/- 2.2 (SE) mV] compared with Na(v)1.8 (+/+) neurons (55.0 +/- 4.3 mV). The maximum rise slope was 84.7 +/- 11.2 mV/ms in Na(v)1.8 (+/+) neurons, significantly faster than in Na(v)1.8 (-/-) neurons where it was 47.2 +/- 1.3 mV/ms. Calculations based on the action potential overshoot in Na(v)1.8 (+/+) and (-/-) neurons, following blockade of Ca2+ currents, indicate that Na(v)1.8 contributes a substantial fraction (80-90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Na(v)1.8 (-/-) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Na(v)1.8 (-/-) neurons is more sensitive to membrane depolarization than in Na(v)1.8 (+/+) neurons, and, in the absence of Na(v)1.8, is attenuated with even modest depolarization. These observations indicate that Na(v)1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 40 条
[1]   The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways [J].
Akopian, AN ;
Souslova, V ;
England, S ;
Okuse, K ;
Ogata, N ;
Ure, J ;
Smith, A ;
Kerr, BJ ;
McMahon, SB ;
Boyce, S ;
Hill, R ;
Stanfa, LC ;
Dickenson, AH ;
Wood, JN .
NATURE NEUROSCIENCE, 1999, 2 (06) :541-548
[2]   A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons [J].
Akopian, AN ;
Sivilotti, L ;
Wood, JN .
NATURE, 1996, 379 (6562) :257-262
[3]   Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons [J].
Baccei, ML ;
Kocsis, JD .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 83 (04) :2227-2238
[4]   Abnormal expression of SNS/PN3 sodium channel in cerebellar Purkinje cells following loss of myelin in the taiep rat [J].
Black, JA ;
Fjell, J ;
Dib-Hajj, S ;
Duncan, ID ;
O'Connor, LT ;
Fried, K ;
Gladwell, Z ;
Tate, S ;
Waxman, SG .
NEUROREPORT, 1999, 10 (05) :913-918
[5]   Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs [J].
Black, JA ;
DibHajj, S ;
McNabola, K ;
Jeste, S ;
Rizzo, MA ;
Kocsis, JD ;
Waxman, SG .
MOLECULAR BRAIN RESEARCH, 1996, 43 (1-2) :117-131
[6]   Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis [J].
Black, JA ;
Dib-Hajj, S ;
Baker, D ;
Newcombe, J ;
Cuzner, ML ;
Waxman, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11598-11602
[7]   3 TYPES OF SODIUM-CHANNELS IN ADULT-RAT DORSAL-ROOT GANGLION NEURONS [J].
CAFFREY, JM ;
ENG, DL ;
BLACK, JA ;
WAXMAN, SG ;
KOCSIS, JD .
BRAIN RESEARCH, 1992, 592 (1-2) :283-297
[8]  
Cummins TR, 1998, J NEUROSCI, V18, P9607
[9]  
Cummins TR, 1997, J NEUROSCI, V17, P3503
[10]   A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons [J].
Cummins, TR ;
Dib-Hajj, SD ;
Black, JA ;
Akopian, AN ;
Wood, JN ;
Waxman, SG .
JOURNAL OF NEUROSCIENCE, 1999, 19 (24)