X-FEM in isogeometric analysis for linear fracture mechanics

被引:232
作者
De Luycker, E. [1 ]
Benson, D. J. [1 ]
Belytschko, T. [2 ]
Bazilevs, Y. [1 ]
Hsu, M. C. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Northwestern Univ, Dept Mech Engn, Evanston, IL 60280 USA
基金
美国国家科学基金会;
关键词
X-FEM; isogeometric analysis; NURBS; linear fracture mechanics; FINITE-ELEMENT-METHOD; CRACK-GROWTH; NURBS; DISCONTINUITIES; APPROXIMATION; PROPAGATION; SIMULATION; PARTITION;
D O I
10.1002/nme.3121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The extended finite element method (X-FEM) has proven to be an accurate, robust method for solving problems in fracture mechanics. X-FEM has typically been used with elements using linear basis functions, although some work has been performed using quadratics. In the current work, the X-FEM formulation is incorporated into isogeometric analysis to obtain solutions with higher order convergence rates for problems in linear fracture mechanics. In comparison with X-FEM with conventional finite elements of equal degree, the NURBS-based isogeometric analysis gives equal asymptotic convergence rates and equal accuracy with fewer degrees of freedom (DOF). Results for linear through quartic NURBS basis functions are presented for a multiplicity of one or a multiplicity equal the degree. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:541 / 565
页数:25
相关论文
共 42 条
  • [1] The role of continuity in residual-based variational multiscale modeling of turbulence
    Akkerman, I.
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Hulshoff, S.
    [J]. COMPUTATIONAL MECHANICS, 2008, 41 (03) : 371 - 378
  • [2] ISOGEOMETRIC COLLOCATION METHODS
    Auricchio, F.
    Da Veiga, L. Beirao
    Hughes, T. J. R.
    Reali, A.
    Sangalli, G.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (11) : 2075 - 2107
  • [3] Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
  • [4] 2-N
  • [5] Isogeometric fluid-structure interaction: theory, algorithms, and computations
    Bazilevs, Y.
    Calo, V. M.
    Hughes, T. J. R.
    Zhang, Y.
    [J]. COMPUTATIONAL MECHANICS, 2008, 43 (01) : 3 - 37
  • [6] Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Hughes, T. J. R.
    Reali, A.
    Scovazzi, G.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 173 - 201
  • [7] Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
  • [8] 2-S
  • [9] Belytschko T, 1996, INT J NUMER METH ENG, V39, P923, DOI 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO
  • [10] 2-W