Cluster tilting for one-dimensional hypersurface singularities

被引:74
作者
Burban, Igor [2 ]
Iyama, Osamu [1 ]
Keller, Bernhard [3 ]
Reiten, Idun [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Johannes Gutenberg Univ Mainz, Fachbereich Phys Math & Informat, Inst Math, D-55099 Mainz, Germany
[3] Univ Paris 07, CNRS, UMR 7586, UFR Math, F-75251 Paris 05, France
[4] Norges Tekn Naturvitenskapelige Univ, Inst Matemat Fag, N-7491 Trondheim, Norway
关键词
cluster tilting; 2-Calabi-Yau categories;
D O I
10.1016/j.aim.2007.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article We Study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite-dimensional symmetric and satisfy tau(2) = id. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2443 / 2484
页数:42
相关论文
共 55 条
[51]  
SOLBERG O, 1989, P LOND MATH SOC, V58, P258
[52]  
van den Bergh M, 2004, LEGACY OF NIELS HENRIK ABEL, P749
[53]   Three-dimensional flops and noncommutative rings [J].
Van den Bergh, M .
DUKE MATHEMATICAL JOURNAL, 2004, 122 (03) :423-455
[54]   Locally finite triangulated categories [J].
Xiao, J ;
Zhu, B .
JOURNAL OF ALGEBRA, 2005, 290 (02) :473-490
[55]  
Yoshino Y., 1990, LONDON MATH SOC LECT, V146