Cluster tilting for one-dimensional hypersurface singularities

被引:73
作者
Burban, Igor [2 ]
Iyama, Osamu [1 ]
Keller, Bernhard [3 ]
Reiten, Idun [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Johannes Gutenberg Univ Mainz, Fachbereich Phys Math & Informat, Inst Math, D-55099 Mainz, Germany
[3] Univ Paris 07, CNRS, UMR 7586, UFR Math, F-75251 Paris 05, France
[4] Norges Tekn Naturvitenskapelige Univ, Inst Matemat Fag, N-7491 Trondheim, Norway
关键词
cluster tilting; 2-Calabi-Yau categories;
D O I
10.1016/j.aim.2007.10.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article We Study Cohen-Macaulay modules over one-dimensional hypersurface singularities and the relationship with the representation theory of associative algebras using methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects and their complete description by homological methods, using higher almost split sequences and results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite-dimensional symmetric and satisfy tau(2) = id. In particular, we compute 2-CY tilted algebras for simple and minimally elliptic curve singularities. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2443 / 2484
页数:42
相关论文
共 55 条
  • [1] AMIOT C, ARXIVMATHCT0612141
  • [2] [Anonymous], 1977, Complex analysis and algebraic geometry, P11
  • [3] Arnold V., 1985, CLASSIFICATION CRITI, VI
  • [4] Auslander M., 1996, REPRESENTATION THEOR, V18, P39
  • [5] Auslander M., 1978, DEKKER, V37, P1
  • [6] On tame weakly symmetric algebras having only periodic modules
    Bialkowski, J
    Skowronski, A
    [J]. ARCHIV DER MATHEMATIK, 2003, 81 (02) : 142 - 154
  • [7] Bondal A. I., 1989, IZV AKAD NAUK SSSR M, V53, P1183
  • [8] BONGARTZ K, 1983, J LOND MATH SOC, V28, P461
  • [9] COVERING-SPACES IN REPRESENTATION-THEORY
    BONGARTZ, K
    GABRIEL, P
    [J]. INVENTIONES MATHEMATICAE, 1982, 65 (03) : 331 - 378
  • [10] BUAN A, 2008, COMMENT MATH HELV, P83