Weyl-Invariant Extension of the Metric-Affine Gravity

被引:15
作者
Vazirian, R. [1 ]
Tanhayi, M. R. [2 ]
Motahar, Z. A. [3 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran 1477893855, Iran
[2] Islamic Azad Univ, Cent Tehran Branch, Dept Phys, Tehran 8683114676, Iran
[3] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
关键词
CONFORMAL-INVARIANCE; TRANSFORMATIONS;
D O I
10.1155/2015/902396
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper, we study the generic form of action in this formalism and then construct the Weyl-invariant version of this theory. It is shown that, in Weitzenbock space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
Aldrovandi R., 2007, Annales de la Fondation Louis de Broglie, V32, P229
[2]  
[Anonymous], 2011, EINSTEIN GRAVITY SUR
[3]   Conformal symmetry and accelerating cosmology in teleparallel gravity [J].
Bamba, Kazuharu ;
Odintsov, Sergei D. ;
Saez-Gomez, Diego .
PHYSICAL REVIEW D, 2013, 88 (08)
[4]   LINEAR CONFORMAL QUANTUM-GRAVITY [J].
BINEGAR, B ;
FRONSDAL, C ;
HEIDENREICH, W .
PHYSICAL REVIEW D, 1983, 27 (10) :2249-2261
[5]  
Blau M., 2012, LECT NOTES GEN RELAT
[6]   Extended Theories of Gravity [J].
Capozziello, Salvatore ;
De Laurentis, Mariafelicia .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 509 (4-5) :167-320
[7]   Modified gravity and cosmology [J].
Clifton, Timothy ;
Ferreira, Pedro G. ;
Padilla, Antonio ;
Skordis, Constantinos .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 513 (1-3) :1-189
[8]   Conformal transformations and conformal invariance in gravitation [J].
Dabrowski, Mariusz P. ;
Garecki, Janusz ;
Blaschke, David B. .
ANNALEN DER PHYSIK, 2009, 18 (01) :13-32
[9]   Metric-torsional conformal gravity [J].
Fabbri, Luca .
PHYSICS LETTERS B, 2012, 707 (05) :415-417
[10]   CONFORMAL INVARIANCE IN PHYSICS [J].
FULTON, T ;
ROHRLICH, F ;
WITTEN, L .
REVIEWS OF MODERN PHYSICS, 1962, 34 (03) :442-&