Temperature-Dependent Threshold Current in InP Quantum-Dot Lasers

被引:14
|
作者
Smowton, Peter M. [1 ]
Elliott, Stella N. [1 ]
Shutts, Samuel [1 ]
Al-Ghamdi, Mohammed S. [2 ]
Krysa, Andrey B. [3 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
[2] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia
[3] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Nonradiative recombination; quantum-dot (QD) devices; semiconductor laser; short-wavelength lasers; threshold current density; WAVELENGTH;
D O I
10.1109/JSTQE.2011.2115235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We explore the origins of the threshold current temperature dependence in InP quantum-dot (QD) lasers. While the internal optical mode loss does not change with temperature, the peak gain required to overcome the losses becomes more difficult to achieve at elevated temperature due to the thermal spreading of carriers among the available states. In 2-mm-long lasers with uncoated facets, this effect is responsible for 66% of the difference in threshold current density between 300 and 360 K. Spontaneous recombination current only makes up at most 10% of the total recombination current density over this temperature range, but the temperature dependence of the spontaneous recombination in the QD and quantum-well capping layers can be used, assuming only a simple proportional nonradiative recombination process, to explain the temperature dependence of the threshold current density.
引用
收藏
页码:1343 / 1348
页数:6
相关论文
共 50 条
  • [31] Temperature Dependence of the Threshold Current Density and External Differential Quantum Efficiency of Semiconductor Lasers (λ=900-920 nm)
    Ladugin, M. A.
    Lyutetskiy, A. V.
    Marmalyuk, A. A.
    Padalitsa, A. A.
    Pikhtin, N. A.
    Podoskin, A. A.
    Rudova, N. A.
    Slipchenko, S. O.
    Shashkin, I. S.
    Bondarev, A. D.
    Tarasov, I. S.
    SEMICONDUCTORS, 2010, 44 (10) : 1370 - 1374
  • [32] Large-Signal Performance of 1.3 μm InAs/GaAs quantum-dot lasers
    Ji, H. M.
    Cao, Y. L.
    Xu, P. F.
    Gu, Y. X.
    Ma, W. Q.
    Liu, Y.
    Wang, X.
    Xie, L.
    Yang, T.
    2009 LASERS & ELECTRO-OPTICS & THE PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1 AND 2, 2009, : 239 - 240
  • [33] The role of different types of dopants in 1.3 μm InAs/GaAs quantum-dot lasers
    Deng, Huiwen
    Jarvis, Lydia
    Li, Zhibo
    Liu, Zizhuo
    Tang, Mingchu
    Li, Keshuang
    Yang, Junjie
    Maglio, Benjamin
    Shutts, Samuel
    Yu, Jiawang
    Wang, Lingfang
    Chen, Siming
    Jin, Chaoyuan
    Seeds, Alwyn
    Liu, Huiyun
    Smowton, Peter M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (21)
  • [34] Quantum-Dot Mode-Locked Lasers With Dual-Mode Optical Injection
    Habruseva, Tatiana
    O'Donoghue, Shane
    Rebrova, Natalia
    Reid, Douglas A.
    Barry, Liam P.
    Rachinskii, Dmitrii
    Huyet, Guillaume
    Hegarty, Stephen P.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (06) : 359 - 361
  • [35] Dependence of threshold current density on the stacked quantum dot layers
    Ning, YQ
    Gao, X
    Liu, Y
    Wang, LJ
    APOC 2001: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS: OPTOELECTRONICS, MATERIALS, AND DEVICES FOR COMMUNICATIONS, 2001, 4580 : 512 - 515
  • [36] InAs quantum dot lasers with extremely low threshold current density (7A/cm2/layer)
    Shimizu, H
    Saravanan, S
    Yoshida, J
    Ibe, S
    Yokouchi, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (33-36): : L1103 - L1104
  • [37] Modeling the temperature characteristics of InAs/GaAs quantum dot lasers
    Rossetti, Marco
    Fiore, Andrea
    Sek, Grzegorz
    Zinoni, Carl
    Li, Lianhe
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (02)
  • [38] Carrier Dynamics and Saturation Effect in (113)B InAs/InP Quantum Dot Lasers
    K. Veselinov
    F. Grillot
    P. Miska
    E. Homeyer
    P. Caroff
    C. Platz
    J. Even
    X. Marie
    O. Dehaese
    S. Loualiche
    A. Ramdane
    Optical and Quantum Electronics, 2006, 38 : 369 - 379
  • [39] Temperature dependence of gain saturation in multilevel quantum dot lasers
    Park, G
    Shchekin, OB
    Deppe, DG
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (09) : 1065 - 1071
  • [40] Carrier dynamics and saturation effect in (113)B InAs/InP quantum dot lasers
    Veselinov, K
    Grillot, F
    Miska, P
    Homeyer, E
    Caroff, P
    Platz, C
    Even, J
    Marie, X
    Dehaese, O
    Loualiche, S
    Ramdane, A
    OPTICAL AND QUANTUM ELECTRONICS, 2006, 38 (4-6) : 369 - 379