Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

被引:157
作者
Kuisma, M. [1 ,2 ]
Sakko, A. [3 ]
Rossi, T. P. [3 ]
Larsen, A. H. [4 ,5 ]
Enkovaara, J. [3 ,6 ]
Lehtovaara, L. [7 ]
Rantala, T. T. [1 ]
机构
[1] Tampere Univ Technol, Dept Phys, FI-33101 Tampere, Finland
[2] Chalmers, MC2, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[3] Aalto Univ, Sch Sci, COMP Ctr Excellence, Dept Appl Phys, FI-00076 Aalto, Finland
[4] Univ Basque Country, UPV EHU, Nanobio Spect Grp, E-20018 Donostia San Sebastian, Spain
[5] Univ Basque Country, UPV EHU, ETSF, E-20018 Donostia San Sebastian, Spain
[6] CSC IT Ctr Sci Ltd, FI-02101 Espoo, Finland
[7] Univ Jyvaskyla, Nanosci Ctr, Dept Chem, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
OPTICAL-PROPERTIES; METAL NANOPARTICLES; AG-CLUSTERS; APPROXIMATION; SIZE; SPECTROSCOPY; ENVIRONMENT; NANOSHELLS; SYSTEMS; SHAPE;
D O I
10.1103/PhysRevB.91.115431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag-55 (1.06 nm), Ag-147 (1.60 nm), Ag-309 (2.14 nm), and Ag-561 (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure code GPAW within the scope of this work. We obtain good agreement with experimental data and modeled results, including photoemission and plasmon resonance. Moreover, we can extrapolate the ab initio results to the classical quasistatically modeled icosahedral clusters.
引用
收藏
页数:8
相关论文
共 59 条
  • [1] Crossover among structural motifs in transition and noble-metal clusters
    Baletto, F
    Ferrando, R
    Fortunelli, A
    Montalenti, F
    Mottet, C
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (09) : 3856 - 3863
  • [2] Optical Properties of Silver Nanoshells from Time-Dependent Density Functional Theory Calculations
    Barcaro, Giovanni
    Sernenta, Luca
    Fortunelli, Alessandro
    Stener, Mauro
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (23) : 12450 - 12458
  • [3] Plasmons in Molecules
    Bernadotte, Stephan
    Evers, Ferdinand
    Jacob, Christoph R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (04) : 1863 - 1878
  • [4] Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy
    Bingham, Julia M.
    Anker, Jeffrey N.
    Kreno, Lauren E.
    Van Duyne, Richard P.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (49) : 17358 - 17359
  • [5] Blackford L. S., 1997, ScaLAPACK Users' Guide, V4
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] Casida M. E., 1995, RECENT ADV DENSITY F, DOI [10.1142/9789812830586, DOI 10.1142/9789812830586]
  • [8] Computational screening of perovskite metal oxides for optimal solar light capture
    Castelli, Ivano E.
    Olsen, Thomas
    Datta, Soumendu
    Landis, David D.
    Dahl, Soren
    Thygesen, Kristian S.
    Jacobsen, Karsten W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) : 5814 - 5819
  • [9] Solution of Poisson's equation for finite systems using plane-wave methods
    Castro, A
    Rubio, A
    Stott, MJ
    [J]. CANADIAN JOURNAL OF PHYSICS, 2003, 81 (10) : 1151 - 1164
  • [10] Charle KP, 1998, CRYST RES TECHNOL, V33, P1085, DOI 10.1002/(SICI)1521-4079(199810)33:7/8<1085::AID-CRAT1085>3.0.CO