Multi-level Residual Attention Network for Speckle Suppression

被引:0
作者
Lei, Yu [1 ,2 ]
Liu, Shuaiqi [1 ,2 ,3 ]
Zhang, Luyao [1 ,2 ]
Zhao, Ling [1 ,2 ]
Zhao, Jie [1 ,2 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
[2] Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071000, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT IV | 2021年 / 13022卷
关键词
Speckle suppression; Deep learning; Residual attention;
D O I
10.1007/978-3-030-88013-2_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to achieve effective speckle suppression, we propose a multi-level residual attention network by combining with multi-level block and residual channel attention network, which is suitable for speckle suppression. Firstly, the network model performs a simple shallow feature extraction for the input noise image through two convolution layers. Then, the residual attention network is used to extract the deep features. Finally, a convolution layer and residual learning are used to generate the final denoised image. Experimental results show that the proposed method can effectively suppress the noise and preserve the edge details of the image.
引用
收藏
页码:288 / 299
页数:12
相关论文
共 22 条
[1]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[2]  
Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
[3]   Image denoising with block-matching and 3D filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IMAGE PROCESSING: ALGORITHMS AND SYSTEMS, NEURAL NETWORKS, AND MACHINE LEARNING, 2006, 6064
[4]   A MODEL FOR RADAR IMAGES AND ITS APPLICATION TO ADAPTIVE DIGITAL FILTERING OF MULTIPLICATIVE NOISE [J].
FROST, VS ;
STILES, JA ;
SHANMUGAN, KS ;
HOLTZMAN, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1982, 4 (02) :157-166
[5]   Unassisted Quantitative Evaluation of Despeckling Filters [J].
Gomez, Luis ;
Ospina, Raydonal ;
Frery, Alejandro C. .
REMOTE SENSING, 2017, 9 (04)
[6]  
Kingma DP, 2015, P 3 INT C LEARN REPR, P1, DOI DOI 10.1145/1830483.1830503
[7]  
Lee J.S., 1994, Remote Sens. Rev, V8, P313, DOI [10.1080/02757259409532206, DOI 10.1080/02757259409532206]
[8]   SPECKLE ANALYSIS AND SMOOTHING OF SYNTHETIC APERTURE RADAR IMAGES [J].
LEE, JS .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1981, 17 (01) :24-32
[9]   Bayesian Shearlet shrinkage for SAR image de-noising via sparse representation [J].
Liu, Shuai Qi ;
Hu, Shao Hai ;
Xiao, Yang ;
An, Yong Li .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2014, 25 (04) :683-701
[10]   SAR Speckle Removal Using Hybrid Frequency Modulations [J].
Liu, Shuaiqi ;
Gao, Lele ;
Lei, Yu ;
Wang, Miaohui ;
Hu, Qi ;
Ma, Xiaole ;
Zhang, Yu-Dong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :3956-3966