A modified Conway-Maxwell-Poisson type binomial distribution and its applications

被引:8
作者
Imoto, T. [1 ]
Ng, C. M. [2 ]
Ong, S. H. [2 ]
Chakraborty, S. [3 ]
机构
[1] Univ Shizuoka, Sch Management & Informat, Suruga Ku, 51-1 Yada, Yada, Shizuoka 4228526, Japan
[2] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur, Malaysia
[3] Dibrugarh Univ, Dept Stat, Dibrugarh, Assam, India
关键词
Dispersion; Exponential family; Kurtosis; Modality; Queueing process; Skewness; DISCRETE-DATA; URN MODEL;
D O I
10.1080/03610926.2017.1291974
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a generalized binomial distribution, which is derived from the finite capacity queueing system with state-dependent service and arrival rates. This distribution is also generated from the conditional Conway-Maxwell-Poisson (CMP) distribution given a sum of two CMP variables. In this article, we consider the properties of the probability mass function, indices of dispersion, skewness and kurtosis, and give applications of the proposed distribution. The estimation method and simulation study are also considered.
引用
收藏
页码:12210 / 12225
页数:16
相关论文
共 23 条
[1]  
Altham P., 1978, Applied Statistics, V27, P162, DOI [DOI 10.2307/2346943, 10.2307/2346943]
[2]  
[Anonymous], LAGRANGE PROBABILITY
[3]  
Bahadur R. R., 1961, Studies in item analysis and prediction, Stanford mathematical studies in the social sciences VI, P158
[4]   FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO BIOLOGICAL DATA - NOTE ON THE EFFICIENT FITTING OF THE NEGATIVE BINOMIAL [J].
BLISS, CI ;
FISHER, RA .
BIOMETRICS, 1953, 9 (02) :176-200
[5]   A COM-Poisson type generalization of the binomial distribution and its properties and applications [J].
Borges, Patrick ;
Rodrigues, Josemar ;
Balakrishnan, Narayanaswamy ;
Bazan, Jorge .
STATISTICS & PROBABILITY LETTERS, 2014, 87 :158-166
[6]   NEW URN MODEL WITH PREDETERMINED STRATEGY [J].
CONSUL, PC ;
MITTAL, SP .
BIOMETRISCHE ZEITSCHRIFT, 1975, 17 (02) :67-75
[7]  
CONSUL PC, 1974, SANKHYA SER B, V36, P391
[8]  
Conway R.W., 1962, J. Ind. Eng, V12, P132, DOI DOI 10.1198/JCGS.2010.08080
[9]   Overdispersed and underdispersed Poisson generalizations [J].
del Castillo, J ;
Pérez-Casany, M .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 134 (02) :486-500
[10]   Analysis of discrete data by Conway-Maxwell Poisson distribution [J].
Gupta, Ramesh C. ;
Sim, S. Z. ;
Ong, S. H. .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2014, 98 (04) :327-343