Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast

被引:24
作者
Sanyal, Sibaji K. [1 ]
Kanwar, Poonam [1 ]
Fernandes, Joel Lars [1 ]
Mahiwal, Swati [1 ]
Yadav, Akhilesh K. [1 ,3 ]
Samtani, Harsha [1 ]
Srivastava, Ashish K. [2 ]
Suprasanna, Penna [2 ]
Pandey, Girdhar K. [1 ]
机构
[1] Univ Delhi, Dept Plant Mol Biol, South Campus, New Delhi, India
[2] Bhabha Atom Res Ctr, Nucl Agr & Biotechnol Div, Mumbai, Maharashtra, India
[3] Shri Murli Manohar Town PG Coll, Ballia, India
来源
FRONTIERS IN PLANT SCIENCE | 2020年 / 11卷
关键词
Por1; mitochondria; reactive oxygen species; stress; mitochondrial membrane potential; Arabidopsis; HUMAN VDAC ISOFORMS; PROTEIN-KINASE; GENE FAMILY; MEMBRANE; EXPRESSION; CELL; INTERACTS; PORIN; TRANSLATION; RESPIRATION;
D O I
10.3389/fpls.2020.00050
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Voltage-dependent anion channels (VDACs) are conserved proteins of the mitochondria. We have functionally compared Arabidopsis VDACs using Saccharomyces cerevisiae Delta por1 and M3 yeast system. VDAC (1, 2, and 4) were able to restore Delta por1 growth in elevated temperature, in oxidative and salt stresses, whereas VDAC3 only partially rescued Delta por1 in these conditions. The ectopic expression of VDAC (1, 2, 3, and 4) in mutant yeast recapitulated the mitochondrial membrane potential thus, enabled it to maintain reactive oxygen species homeostasis. Overexpression of these VDACs (AtVDACs) in M3 strain did not display any synergistic or antagonistic activity with the native yeast VDAC1 (ScVDAC1). Collectively, our data suggest that Arabidopsis VDACs are involved in regulating respiration, reactive oxygen species homeostasis, and stress tolerance in yeast.
引用
收藏
页数:14
相关论文
共 47 条
  • [1] Molecular characterization of rice hsp101:: complementation of yeast hsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types
    Agarwal, M
    Sahi, C
    Katiyar-Agarwal, S
    Agarwal, S
    Young, T
    Gallie, DR
    Sharma, VM
    Ganesan, K
    Grover, A
    [J]. PLANT MOLECULAR BIOLOGY, 2003, 51 (04) : 543 - 553
  • [2] Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family
    Al Bitar, F
    Roosens, N
    Smeyers, M
    Vauterin, M
    Van Boxtel, J
    Jacobs, M
    Homblé, F
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2003, 1625 (01): : 43 - 51
  • [3] Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein
    BlachlyDyson, E
    Song, JM
    Wolfgang, WJ
    Colombini, M
    Forte, M
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (10) : 5727 - 5738
  • [4] BLACHLYDYSON E, 1993, J BIOL CHEM, V268, P1835
  • [5] Effects of VDAC isoforms on CuZn-superoxide dismutase activity in the intermembrane space of Saccharomyces cerevisiae mitochondria
    Budzinska, Malgorzata
    Galganska, Hanna
    Wojtkowska, Malgorzata
    Stobienia, Olgierd
    Kmita, Hanna
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 357 (04) : 1065 - 1070
  • [6] The TOM complex is involved in the release of superoxide anion from mitochondria
    Budzinska, Malgorzata
    Galganska, Hanna
    Karachitos, Andonis
    Wojtkowska, Malgorzata
    Kmita, Hanna
    [J]. JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2009, 41 (04) : 361 - 367
  • [7] Complex I is the major site of mitochondrial superoxide production by paraquat
    Cocheme, Helena M.
    Murphy, Michael P.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (04) : 1786 - 1798
  • [8] Colombini M, 1996, Ion Channels, V4, P169
  • [9] VDAC structure, selectivity, and dynamics
    Colombini, Marco
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2012, 1818 (06): : 1457 - 1465
  • [10] SR/ER-mitochondrial local communication: Calcium and ROS
    Csordas, Gyoergy
    Hajnoczky, Gyoergy
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (11): : 1352 - 1362