Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning

被引:80
|
作者
Ren, Yunxiao [1 ]
Chakraborty, Trinad [2 ,3 ]
Doijad, Swapnil [2 ,3 ]
Falgenhauer, Linda [3 ,4 ,5 ]
Falgenhauer, Jane [2 ,3 ]
Goesmann, Alexander [3 ,6 ]
Hauschild, Anne-Christin [1 ]
Schwengers, Oliver [3 ,6 ]
Heider, Dominik [1 ]
机构
[1] Philipps Univ Marburg, Fac Math & Comp Sci, Dept Data Sci Biomed, D-35032 Marburg, Germany
[2] Justus Liebig Univ Giessen, Inst Med Microbiol, D-35392 Giessen, Germany
[3] German Ctr Infect Res, Partner Site Giessen Marburg Langen, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Inst Hyg & Environm Med, D-35392 Giessen, Germany
[5] Hess Univ Kompetenzzentrum Krankenhaushyg, D-35392 Giessen, Germany
[6] Justus Liebig Univ Giessen, Dept Bioinformat & Syst Biol, D-35392 Giessen, Germany
关键词
CHAOS GAME REPRESENTATION; ANTIBIOTIC-RESISTANCE; ESCHERICHIA-COLI; READ ALIGNMENT; MODEL;
D O I
10.1093/bioinformatics/btab681
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria. However, comparing different machine learning methods for the prediction of AMR based on different encodings and whole-genome sequencing data without previously known knowledge remains to be done. Results: In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazidime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding, one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset. Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to identify mutations that are associated with AMR for each antibiotic.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [41] Whole-genome sequencing of a spirochaete
    Cathy Holding
    Genome Biology, 4 (1)
  • [42] Whole-genome sequencing strategies
    Stein, Richard, 1600, Mary Ann Liebert Inc. (34):
  • [43] Recommend Whole-Genome Sequencing
    Dimmock, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (25): : 2444 - 2445
  • [44] Whole-Genome Sequencing in Cancer
    Zhao, Eric Y.
    Jones, Martin
    Jones, Steven J. M.
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2019, 9 (03):
  • [45] Whole-genome sequencing and the physician
    Thorogood, A.
    Knoppers, B. M.
    Dondorp, W. J.
    de Wert, G. M. W. R.
    CLINICAL GENETICS, 2012, 81 (06) : 511 - 513
  • [46] Clinical whole-genome sequencing
    Orli G. Bahcall
    Nature Reviews Genetics, 2015, 16 (7) : 377 - 377
  • [47] Whole-Genome Sequencing for Predicting Clarithromycin Resistance in Mycobacterium abscessus
    Lipworth, Samuel
    Hough, Natasha
    Leach, Laura
    Morgan, Marcus
    Jeffery, Katie
    Andersson, Monique
    Robinson, Esther
    Smith, E. Grace
    Crook, Derrick
    Peto, Tim
    Walker, Timothy
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2019, 63 (01)
  • [48] Validation and Application of Long-Read Whole-Genome Sequencing for Antimicrobial Resistance Gene Detection and Antimicrobial Susceptibility Testing
    Weinmaier, Thomas
    Conzemius, Rick
    Bergman, Yehudit
    Lewis, Shawna
    Jacobs, Emily B.
    Tamma, Pranita D.
    Materna, Arne
    Weinberger, Johannes
    Beisken, Stephan
    Simner, Patricia J.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2023, 67 (01)
  • [49] Whole-Genome Sequencing to Predict Antimicrobial Susceptibility Profiles in Neisseria gonorrhoeae
    Bristow, Claire C.
    Mortimer, Tatum D.
    Morris, Sheldon
    Grad, Yonatan H.
    Soge, Olusegun O.
    Wakatake, Erika
    Pascual, Rushlenne
    Murphy, Sara McCurdy
    Fryling, Kyra E.
    Adamson, Paul C.
    Dillon, Jo-Anne
    Parmar, Nidhi R.
    Le, Hai Ha Long
    Van Le, Hung
    Urena, Reyna Margarita Ovalles
    Mitchev, Nireshni
    Mlisana, Koleka
    Wi, Teodora
    Dickson, Samuel P.
    Klausner, Jeffrey D.
    JOURNAL OF INFECTIOUS DISEASES, 2023, 227 (07): : 917 - 925
  • [50] Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study
    Walker, Timothy M.
    Kohl, Thomas A.
    Omar, Shaheed V.
    Hedge, Jessica
    Elias, Carlos Del Ojo
    Bradley, Phelim
    Iqbal, Zamin
    Feverriegel, Silke
    Niehaus, Katherine E.
    Wilson, Daniel J.
    Clifton, David A.
    Kapatai, Georgia
    Ip, Camilla L. C.
    Bowden, Rory
    Drobniewski, Francis A.
    Allix-Beguec, Caroline
    Gaudin, Cyril
    Parkhill, Julian
    Diet, Roland
    Supply, Philip
    Crook, Derrick W.
    Smith, E. Grace
    Walker, A. Sarah
    Ismail, Nazir
    Niemann, Stefan
    Petot, Tim E. A.
    LANCET INFECTIOUS DISEASES, 2015, 15 (10): : 1193 - 1202