Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning

被引:80
|
作者
Ren, Yunxiao [1 ]
Chakraborty, Trinad [2 ,3 ]
Doijad, Swapnil [2 ,3 ]
Falgenhauer, Linda [3 ,4 ,5 ]
Falgenhauer, Jane [2 ,3 ]
Goesmann, Alexander [3 ,6 ]
Hauschild, Anne-Christin [1 ]
Schwengers, Oliver [3 ,6 ]
Heider, Dominik [1 ]
机构
[1] Philipps Univ Marburg, Fac Math & Comp Sci, Dept Data Sci Biomed, D-35032 Marburg, Germany
[2] Justus Liebig Univ Giessen, Inst Med Microbiol, D-35392 Giessen, Germany
[3] German Ctr Infect Res, Partner Site Giessen Marburg Langen, D-35392 Giessen, Germany
[4] Justus Liebig Univ Giessen, Inst Hyg & Environm Med, D-35392 Giessen, Germany
[5] Hess Univ Kompetenzzentrum Krankenhaushyg, D-35392 Giessen, Germany
[6] Justus Liebig Univ Giessen, Dept Bioinformat & Syst Biol, D-35392 Giessen, Germany
关键词
CHAOS GAME REPRESENTATION; ANTIBIOTIC-RESISTANCE; ESCHERICHIA-COLI; READ ALIGNMENT; MODEL;
D O I
10.1093/bioinformatics/btab681
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria. However, comparing different machine learning methods for the prediction of AMR based on different encodings and whole-genome sequencing data without previously known knowledge remains to be done. Results: In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazidime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding, one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset. Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to identify mutations that are associated with AMR for each antibiotic.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 50 条
  • [1] Whole-genome sequencing in the prediction of antimicrobial resistance
    Chan, Kok-Gan
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2016, 14 (07) : 617 - 619
  • [2] Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing
    Gordon, N. C.
    Price, J. R.
    Cole, K.
    Everitt, R.
    Morgan, M.
    Finney, J.
    Kearns, A. M.
    Pichon, B.
    Young, B.
    Wilson, D. J.
    Llewelyn, M. J.
    Paul, J.
    Peto, T. E. A.
    Crook, D. W.
    Walker, A. S.
    Golubchik, T.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2014, 52 (04) : 1182 - 1191
  • [3] Machine learning and feature extraction for rapid antimicrobial resistance prediction of Acinetobacter baumannii from whole-genome sequencing data
    Gao, Yue
    Li, Henan
    Zhao, Chunjiang
    Li, Shuguang
    Yin, Guankun
    Wang, Hui
    FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [4] Whole-genome sequencing to control antimicrobial resistance
    Koeser, Claudio U.
    Ellington, Matthew J.
    Peacock, Sharon J.
    TRENDS IN GENETICS, 2014, 30 (09) : 401 - 407
  • [5] Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus
    Tyson, Gregory H.
    Sabo, Jonathan L.
    Rice-Trujillo, Crystal
    Hernandez, Jacqueline
    McDermott, Patrick F.
    PATHOGENS AND DISEASE, 2018, 76 (02):
  • [6] Prediction of antimicrobial resistance in clinicalCampylobacter jejuniisolates from whole-genome sequencing data
    Dahl, Louise Gade
    Joensen, Katrine Grimstrup
    Osterlund, Mark Thomas
    Kiil, Kristoffer
    Nielsen, Eva Moller
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2021, 40 (04) : 673 - 682
  • [7] Web-based prediction of antimicrobial resistance in enterococcal clinical isolates by whole-genome sequencing
    Malo Penven
    Asma Zouari
    Sophie Nogues
    Anaïs Collet
    Maxime Lecourt
    Aurélien Birer
    François Guerin
    Gabriel Auger
    Vincent Cattoir
    European Journal of Clinical Microbiology & Infectious Diseases, 2023, 42 : 67 - 76
  • [8] Web-based prediction of antimicrobial resistance in enterococcal clinical isolates by whole-genome sequencing
    Penven, Malo
    Zouari, Asma
    Nogues, Sophie
    Collet, Anais
    Lecourt, Maxime
    Birer, Aurelien
    Guerin, Francois
    Auger, Gabriel
    Cattoir, Vincent
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2023, 42 (01) : 67 - 76
  • [9] Whole-Genome Sequencing for Detecting Antimicrobial Resistance in Nontyphoidal Salmonella
    McDermott, Patrick F.
    Tyson, Gregory H.
    Kabera, Claudine
    Chen, Yuansha
    Li, Cong
    Folster, Jason P.
    Ayers, Sherry L.
    Lam, Claudia
    Tate, Heather P.
    Zhao, Shaohua
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2016, 60 (09) : 5515 - 5520
  • [10] Systematic Evaluation of Whole-Genome Sequencing Based Prediction of Antimicrobial Resistance in Campylobacter jejuni and C. coli
    Hodges, Lisa M.
    Taboada, Eduardo N.
    Koziol, Adam
    Mutschall, Steven
    Blais, Burton W.
    Inglis, G. Douglas
    Leclair, Daniel
    Carrillo, Catherine D.
    FRONTIERS IN MICROBIOLOGY, 2021, 12