Formality of the Dolbeault complex and deformations of holomorphic Poisson manifolds

被引:0
作者
Chen, Youming [1 ]
机构
[1] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
关键词
Holomorphic Poisson manifold; ? ? -lemma; ? ? ? -lemma; Holomorphic Koszul-Brylinski homology; Maurer-Cartan element; Deformation; PARTIAL-DERIVATIVE-LEMMA; GENERALIZED COMPLEX; HODGE THEORY; COHOMOLOGY;
D O I
10.1016/j.geomphys.2022.104679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to study the properties of holomorphic Poisson manifolds (M, pi) under the assumption of partial differential partial differential over line -lemma or partial differential pi partial differential over line -lemma. Under these assumptions, we show that the Koszul-Brylinski homology can be recovered by the Dolbeault cohomology, and prove that the DGLA (A center dot,center dot M , partial differential over line , [-, -] partial differential pi) is formal. Furthermore, we discuss the Maurer- Cartan elements of (A center dot,center dot M [[t]], partial differential over line , [-, -] partial differential pi) which induce the deformations of complex structure of M.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
[21]   HKT Manifolds: Hodge Theory, Formality and Balanced Metrics [J].
Gentili, Giovanni ;
Tardini, Nicoletta .
QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02) :413-435
[22]   Cohomologies of Generalized Complex Manifolds and Nilmanifolds [J].
Daniele Angella ;
Simone Calamai ;
Hisashi Kasuya .
The Journal of Geometric Analysis, 2017, 27 :142-161
[23]   Simultaneous deformations and Poisson geometry [J].
Fregier, Yael ;
Zambon, Marco .
COMPOSITIO MATHEMATICA, 2015, 151 (09) :1763-1790
[24]   ON DEFORMATIONS OF COMPACT BALANCED MANIFOLDS [J].
Saracco, Alberto ;
Tomassini, Adriano .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) :641-653
[25]   On small, deformations of balanced manifolds [J].
Angella, Daniele ;
Ugarte, Luis .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 54 :464-474
[26]   On small deformations of paracomplex manifolds [J].
Medori, Costantino ;
Tomassini, Adriano .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (04) :507-522
[27]   Holomorphic Morse inequalities on manifolds with boundary [J].
Berman, R .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (04) :1055-+
[28]   Deformations of a Holomorphic Map and Its Degeneracy Locus [J].
Ebihara, Madoka .
TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) :253-277
[29]   partial derivativepartial derivative-Complex symplectic and Calabi-Yau manifolds: Albanese map, deformations and period maps [J].
Anthes, Ben ;
Cattaneo, Andrea ;
Rollenske, Soenke ;
Tomassini, Adriano .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) :377-398
[30]   Dolbeault-type complexes on G2- and Spin(7)-manifolds [J].
Zhang, Xue .
MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) :685-703