On invariants for measure preserving transformations

被引:22
作者
Hjorth, G [1 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
classification; measure preserving transformation; Polish group action;
D O I
10.4064/fm169-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classification problem for measure preserving transformations is strictly more complicated than that of graph isomorphism.
引用
收藏
页码:51 / 84
页数:34
相关论文
共 25 条
[1]  
[Anonymous], 1993, ENCY MATH APPL, DOI DOI 10.1017/CBO9780511551574
[2]  
Becker H., 1996, LONDON MATH SOC LECT, V232
[3]   The complexity of the collection of measure-distal transformations [J].
Beleznay, F ;
Foreman, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :929-962
[4]   TRANSFORMATION GROUPS AND C-ALGEBRAS [J].
EFFROS, EG .
ANNALS OF MATHEMATICS, 1965, 81 (01) :38-&
[5]   BOREL STRUCTURES AND INVARIANTS FOR MEASURABLE TRANSFORMATIONS [J].
FELDMAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (03) :383-394
[6]   A BOREL REDUCIBILITY THEORY FOR CLASSES OF COUNTABLE STRUCTURES [J].
FRIEDMAN, H ;
STANLEY, L .
JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (03) :894-914
[7]  
Furstenberg H., 1981, RECURRENCE ERGODIC T
[8]   Operator methods in classical mechanics, II [J].
Halmos, PR ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1942, 43 :332-350
[9]   MEASURABLE TRANSFORMATIONS [J].
HALMOS, PR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (11) :1015-1034
[10]   RECENT PROGRESS IN ERGODIC THEORY [J].
HALMOS, PR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) :70-&