STRONG CONVEXITY FOR HARMONIC FUNCTIONS ON COMPACT SYMMETRIC SPACES

被引:0
|
作者
Lippner, Gabor [1 ]
Mangoubi, Dan [2 ]
Mcguirk, Zachary [2 ]
Yovel, Rachel [2 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
关键词
Symmetric spaces; harmonic functions; Laplace powers; frequency; function; absolute monotonicity; convexity;
D O I
10.1090/proc/15735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h be a harmonic function defined on a spherical disk. It is shown that Delta k|h|2 is nonnegative for all k is an element of N where Delta is the Laplace-Beltrami operator. This fact is generalized to harmonic functions defined on a disk in a normal homogeneous compact Riemannian manifold, and in particular in a symmetric space of the compact type. This complements a similar property for harmonic functions on Rn discovered by the first two authors and is related to strong convexity of the L2-growth function of harmonic functions.
引用
收藏
页码:1613 / 1622
页数:10
相关论文
共 50 条
  • [41] Support theorems on Rn and non-compact symmetric spaces
    Narayanan, E. K.
    Samanta, Amit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2587 - 2612
  • [42] ISOTROPIC JACOBI FIELDS ON COMPACT 3-SYMMETRIC SPACES
    Carmelo Gonzalez-Davila, Jose
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (02) : 273 - 288
  • [43] Fibering polarizations and Mabuchi rays on symmetric spaces of compact type
    Baier, Thomas
    Ferreira, Ana Cristina
    Hilgert, Joachim
    Mourao, Jose M.
    Nunes, Joao P.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (01)
  • [44] On p-Convexity and q-Concavity in Non-Commutative Symmetric Spaces
    P. G. Dodds
    T. K. Dodds
    F. A. Sukochev
    Integral Equations and Operator Theory, 2014, 78 : 91 - 114
  • [45] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    M. Muratov
    Yu. Pashkova
    B.-Z. Rubshtein
    Lobachevskii Journal of Mathematics, 2021, 42 : 949 - 966
  • [46] Mean Ergodic Theorems in Symmetric Spaces of Measurable Functions
    Muratov, M.
    Pashkova, Yu
    Rubshtein, B-Z
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (05) : 949 - 966
  • [47] Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
    S. V. Astashkin
    F. A. Sukochev
    Mathematical Notes, 2004, 76 : 449 - 454
  • [48] Comparison of sums of independent and disjoint functions in symmetric spaces
    Astashkin, SV
    Sukochev, FA
    MATHEMATICAL NOTES, 2004, 76 (3-4) : 449 - 454
  • [49] Harmonic Functions on Metric Measure Spaces: Convergence and Compactness
    Gaczkowski, Michal
    Gorka, Przemyslaw
    POTENTIAL ANALYSIS, 2009, 31 (03) : 203 - 214
  • [50] Existence of Tangential Limits for α-Harmonic Functions on Half Spaces
    Yoshihiro Mizuta
    Potential Analysis, 2006, 25 : 29 - 36