STRONG CONVEXITY FOR HARMONIC FUNCTIONS ON COMPACT SYMMETRIC SPACES

被引:0
|
作者
Lippner, Gabor [1 ]
Mangoubi, Dan [2 ]
Mcguirk, Zachary [2 ]
Yovel, Rachel [2 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
关键词
Symmetric spaces; harmonic functions; Laplace powers; frequency; function; absolute monotonicity; convexity;
D O I
10.1090/proc/15735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h be a harmonic function defined on a spherical disk. It is shown that Delta k|h|2 is nonnegative for all k is an element of N where Delta is the Laplace-Beltrami operator. This fact is generalized to harmonic functions defined on a disk in a normal homogeneous compact Riemannian manifold, and in particular in a symmetric space of the compact type. This complements a similar property for harmonic functions on Rn discovered by the first two authors and is related to strong convexity of the L2-growth function of harmonic functions.
引用
收藏
页码:1613 / 1622
页数:10
相关论文
共 50 条
  • [31] Free, isometric circle actions on compact symmetric spaces
    Eschenburg, JH
    Kollross, A
    Shankar, K
    GEOMETRIAE DEDICATA, 2003, 102 (01) : 35 - 44
  • [32] ON HARMONIC STARLIKE FUNCTIONS WITH RESPECT TO SYMMETRIC, CONJUGATE AND SYMMETRIC CONJUGATE POINTS
    Liu, Zhi-Hong
    Sun, Yong
    Wang, Zhi-Gang
    QUAESTIONES MATHEMATICAE, 2014, 37 (01) : 79 - 90
  • [33] On functions with given spherical means on symmetric spaces
    Volchkov V.V.
    Journal of Mathematical Sciences, 2011, 175 (4) : 402 - 412
  • [34] Convexity of energy functions of harmonic maps homotopic to covering maps of surfaces
    Kim, Inkang
    Wan, Xueyuan
    Zhang, Genkai
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (10)
  • [35] Deriving harmonic functions in higher dimensional spaces
    Qian, T
    Sommen, F
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (02): : 275 - 288
  • [36] A symmetric convexity measure
    Rosin, Paul L.
    Mumford, Christine L.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2006, 103 (02) : 101 - 111
  • [37] Applications of Symmetric Quantum Calculus to the Class of Harmonic Functions
    Khan, Mohammad Faisal
    Al-Shbeil, Isra
    Aloraini, Najla
    Khan, Nazar
    Khan, Shahid
    SYMMETRY-BASEL, 2022, 14 (10):
  • [38] Convexity of harmonic densities
    Benko, David
    Dragnev, Peter
    Totik, Vilmos
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) : 947 - 960
  • [39] Random Harmonic Functions in Growth Spaces and Bloch-type Spaces
    Eikrem, Kjersti Solberg
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (02): : 284 - 302
  • [40] RIGIDITY OF RANK-ONE FACTORS OF COMPACT SYMMETRIC SPACES
    Clarke, Andrew
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (02) : 491 - 509