STRONG CONVEXITY FOR HARMONIC FUNCTIONS ON COMPACT SYMMETRIC SPACES

被引:0
|
作者
Lippner, Gabor [1 ]
Mangoubi, Dan [2 ]
Mcguirk, Zachary [2 ]
Yovel, Rachel [2 ]
机构
[1] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
[2] Hebrew Univ Jerusalem, Einstein Inst Math, Edmond J Safra Campus, IL-91904 Jerusalem, Israel
关键词
Symmetric spaces; harmonic functions; Laplace powers; frequency; function; absolute monotonicity; convexity;
D O I
10.1090/proc/15735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let h be a harmonic function defined on a spherical disk. It is shown that Delta k|h|2 is nonnegative for all k is an element of N where Delta is the Laplace-Beltrami operator. This fact is generalized to harmonic functions defined on a disk in a normal homogeneous compact Riemannian manifold, and in particular in a symmetric space of the compact type. This complements a similar property for harmonic functions on Rn discovered by the first two authors and is related to strong convexity of the L2-growth function of harmonic functions.
引用
收藏
页码:1613 / 1622
页数:10
相关论文
共 50 条
  • [1] Integrable harmonic functions on symmetric spaces of rank one
    Ben Natan, Y
    Weit, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 160 (01) : 141 - 149
  • [2] CONVEXITY OF REFLECTIVE SUBMANIFOLDS IN SYMMETRIC R-SPACES
    Quast, Peter
    Tanaka, Makiko Sumi
    TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (04) : 607 - 616
  • [3] Convexity theorems for semisimple symmetric spaces
    Balibanu, Dana
    van den Ban, Erik P.
    FORUM MATHEMATICUM, 2016, 28 (06) : 1167 - 1204
  • [4] Stability of Compact Symmetric Spaces
    Semmelmann, Uwe
    Weingart, Gregor
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)
  • [5] Stability of Compact Symmetric Spaces
    Uwe Semmelmann
    Gregor Weingart
    The Journal of Geometric Analysis, 2022, 32
  • [6] Functions related to convexity and smoothness of normed spaces
    Banaś J.
    Rzepka B.
    Rendiconti del Circolo Matematico di Palermo, 1997, 46 (3) : 395 - 424
  • [7] Holomorphic Sobolev spaces associated to compact symmetric spaces
    Thangavelu, S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 438 - 462
  • [8] Counting geodesics on compact symmetric spaces
    Seco, Lucas
    Patrao, Mauro
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (02): : 281 - 310
  • [9] Counting geodesics on compact symmetric spaces
    Lucas Seco
    Mauro Patrão
    Monatshefte für Mathematik, 2024, 204 : 281 - 310
  • [10] Complementability of Spaces of Harmonic Functions
    Jiří Spurný
    Potential Analysis, 2008, 29 : 271 - 302