Incompressible Limit for Compressible Fluids with Stochastic Forcing

被引:22
作者
Breit, Dominic [1 ]
Feireisl, Eduard [2 ]
Hofmanova, Martina [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Inst Math AS CR, Zitna 25 CZ, Prague 11567 1, Czech Republic
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATIONS; BANACH-SPACES; FLOWS;
D O I
10.1007/s00205-016-1014-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of the isentropic Navier-Stokes system driven by a multiplicative stochastic forcing in the compressible regime, where the Mach number approaches zero. Our approach is based on the recently developed concept of a weak martingale solution to the primitive system, uniform bounds derived from a stochastic analogue of the modulated energy inequality, and careful analysis of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as the limit problem.
引用
收藏
页码:895 / 926
页数:32
相关论文
共 27 条
[21]   Incompressible limit for a viscous compressible fluid [J].
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (06) :585-627
[22]   A local approach to the incompressible limit [J].
Lions, PL ;
Masmoudi, N .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05) :387-392
[23]   Stochastic nonlinear wave equations in local Sobolev spaces [J].
Ondrejat, Martin .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :1041-1091
[24]  
Ondrejt M., 2004, Dissertationes Math. (Rozprawy Mat.), V426, P1
[25]  
Prevot C, 2007, LECT NOTES MATH, V1905, P1, DOI 10.1007/978-3-540-70781-3
[26]   Global solution of bi-dimensional stochastic equation for a viscous gas [J].
Tornatore, E .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (04) :343-360
[27]   Stochastic integration in UMD Banach spaces [J].
van Neerven, J. M. A. M. ;
Veraar, M. C. ;
Weis, L. .
ANNALS OF PROBABILITY, 2007, 35 (04) :1438-1478