Incompressible Limit for Compressible Fluids with Stochastic Forcing

被引:22
作者
Breit, Dominic [1 ]
Feireisl, Eduard [2 ]
Hofmanova, Martina [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Inst Math AS CR, Zitna 25 CZ, Prague 11567 1, Czech Republic
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATIONS; BANACH-SPACES; FLOWS;
D O I
10.1007/s00205-016-1014-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of the isentropic Navier-Stokes system driven by a multiplicative stochastic forcing in the compressible regime, where the Mach number approaches zero. Our approach is based on the recently developed concept of a weak martingale solution to the primitive system, uniform bounds derived from a stochastic analogue of the modulated energy inequality, and careful analysis of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as the limit problem.
引用
收藏
页码:895 / 926
页数:32
相关论文
共 27 条
[1]   A penalization method to take into account obstacles in incompressible viscous flows [J].
Angot, P ;
Bruneau, CH ;
Fabrie, P .
NUMERISCHE MATHEMATIK, 1999, 81 (04) :497-520
[2]  
[Anonymous], 1992, ENCY MATH APPL
[3]  
Breit D., ARXIV151009001V1
[4]  
Breit D., INDIANA U M IN PRESS
[5]   STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS IN M-TYPE-2 BANACH-SPACES [J].
BRZEZNIAK, Z .
POTENTIAL ANALYSIS, 1995, 4 (01) :1-45
[6]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
CAPINSKI, M ;
CUTLAND, N .
ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) :59-85
[7]   STOCHASTIC-EQUATIONS IN HILBERT-SPACE WITH APPLICATION TO NAVIER-STOKES EQUATIONS IN ANY DIMENSION [J].
CAPINSKI, M ;
GATAREK, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :26-35
[8]  
CAPINSKI M, 1993, U IAGEL ACTA MATH, V30, P219
[9]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[10]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279