Fabrication of Novel Chitosan-Hydroxyapatite Nanostructured Thin Films for Biomedical Applications

被引:14
|
作者
Ciobanu, Carmen Steluta [1 ]
Iconaru, Simona Liliana [1 ]
Predoi, Daniela [1 ]
Trusca, Roxana-Doina [2 ,3 ]
Prodan, Alina Mihaela [4 ,5 ]
Groza, Andreea [6 ]
Chifiriuc, Mariana Carmen [7 ,8 ,9 ]
Beuran, Mircea [4 ,5 ]
机构
[1] Natl Inst Mat Phys, Atomistilor St,405A,POB MG 07, Magurele 077125, Romania
[2] Univ Politehn Bucuresti, Natl Ctr Micro & Nanomat, Fac Appl Chem & Mat Sci, Splaiul Independentei 313, Bucharest 060042, Romania
[3] Univ Politehn Bucuresti, Natl Ctr Food Safety, Fac Appl Chem & Mat Sci, Splaiul Independentei 313, Bucharest 060042, Romania
[4] Emergency Hosp Floreasca Bucharest, 8 Calea Floresca,Sect 1, Bucharest 014461, Romania
[5] Carol Davila Univ Med & Pharm, Dept Surg, 8 Eroii Sanitari,Sect 5, Bucharest 050474, Romania
[6] Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St,POB MG 36, Magurele 077125, Romania
[7] Univ Bucharest, Life Environm & Earth Sci Div, Res Inst, Univ Bucharest ICUB, Bucharest 060023, Romania
[8] Acad Romanian Scientists, 54 Spl Independentei St,Dist 5, Bucharest 050085, Romania
[9] Romanian Acad, Div Biol Sci, 25,Calea Victoriei,Sect 1,Dist 1, Bucharest 010071, Romania
关键词
chitosan; hydroxyapatite; coatings; morphology; COMPOSITE;
D O I
10.3390/coatings11121561
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we develop chitosan-hydroxyapatite (CS-HAp) composite layers that were deposited on Si substrates in radio frequency (RF) magnetron sputtering discharge in argon gas. The composition and structure of CS-HAp composite layers were investigated by analytical techniques, such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), metallographic microscopy (MM), and atomic force microscopy (AFM). On the other hand, in the present study the second order derivative of FT-IR-ATR spectra, for compositional analyses of CS-HAp, were used. The SEM, MM, and AFM data have shown the formation of CS-HAp composite layers. The surface of CS-HAp composite layers showed uniform growth (at an Ar gas working pressure of p = 2 x 10(-3) mbar). The surface of the CS-HAp composites coatings became more nanostructured, becoming granular as the gas pressure increased from 5 x 10(-3) to 1.2 x 10(-2) mbar. However, our studies revealed that the surface morphology of the CS-HAp composite layers varies with the Ar gas working pressure. At the same time, optical properties are slightly influenced by Ar pressure. Their unique physicochemical properties make them suitable for various applications in the biomedical field, if we consider the already proven antimicrobial properties of chitosan. The antifungal properties and the capacity of the CS-HAp composite layers to inhibit the development of fungal biofilms were also demonstrated using the Candida albicans ATCC 10231 (C. albicans) fungal strain.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Construction of A Fluorescent Nanostructured Chitosan-Hydroxyapatite Scaffold by Nanocrystallon Induced Biomimetic Mineralization and Its Cell Biocompatibility
    Wang, Guancong
    Zheng, Lin
    Zhao, Hongshi
    Miao, Junying
    Sun, Chunhui
    Liu, Hong
    Huang, Zhen
    Yu, Xiaoqiang
    Wang, Jiyang
    Tao, Xutang
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (05) : 1692 - 1701
  • [22] Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers
    Pawlik, Anna
    Rehman, Muhammad Atiq Ur
    Nawaz, Qaisar
    Bastan, Fatih E.
    Sulka, Grzegorz D.
    Boccaccini, Aldo R.
    ELECTROCHIMICA ACTA, 2019, 307 : 465 - 473
  • [23] Fabrication and characterization of ultra-thin magnetic films for biomedical applications
    Mattoli, V.
    Pensabene, V.
    Fujie, T.
    Taccola, S.
    Menciassi, A.
    Takeoka, S.
    Dario, P.
    PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01): : 28 - +
  • [24] Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications
    Correlo, VM
    Boesel, LF
    Bhattacharya, M
    Mano, JF
    Neves, NM
    Reis, RL
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2005, 290 (12) : 1157 - 1165
  • [25] Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan-hydroxyapatite scaffolds for bone regeneration
    Goh, Chin Yee
    Lim, Siew Shee
    Tshai, Kim Yeow
    El Azab, Ahmed Wael Zaki Zaki
    Loh, Hwei-San
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (04) : 3403 - 3420
  • [26] Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment
    Petrov, Ivo
    Kalinkevich, Oksana
    Pogorielov, Maksym
    Kalinkevich, Aleksei
    Stanislavov, Aleksandr
    Sklyar, Anatoly
    Danilchenko, Sergei
    Yovcheva, Temenuzhka
    CARBOHYDRATE POLYMERS, 2016, 151 : 770 - 778
  • [27] Characterization of Chitosan and fabrication of Chitosan hydrogels matrices for biomedical applications
    Charhouf, I.
    Benaamara, A.
    Abourriche, A.
    Berrada, M.
    REMCES XII - XIIE RENCONTRE MAROCAINE SUR LA CHIMIE DE L'ETAT SOLIDE, 2013, 5
  • [28] Femtosecond-laser-assisted LIPSS generation on chitosan/hydroxyapatite thin layers for biomedical applications
    Bliznakova, I
    Daskalova, A.
    Zhelyazkova, A.
    Angelova, L.
    Trifonov, A.
    Buchvarov, I
    20TH INTERNATIONAL SCHOOL ON CONDENSED MATTER PHYSICS, 2019, 1186
  • [29] Functionalization of polymer multilayer thin films for novel biomedical applications
    Yeongseon Jang
    Saibom Park
    Kookheon Char
    Korean Journal of Chemical Engineering, 2011, 28 : 1149 - 1160
  • [30] Functionalization of polymer multilayer thin films for novel biomedical applications
    Jang, Yeongseon
    Park, Saibom
    Char, Kookheon
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (05) : 1149 - 1160