Pathology of the Laboratory Mouse: An International Workshop on Challenges for High Throughput Phenotyping

被引:9
|
作者
Schofield, Paul N. [1 ,2 ]
Dubus, Pierre [3 ,4 ]
Klein, Laurence [5 ]
Moore, Mark [6 ]
McKerlie, Colin [7 ]
Ward, Jerrold M. [8 ]
Sundberg, John P. [2 ]
机构
[1] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3EG, England
[2] Jackson Lab, Bar Harbor, ME 04609 USA
[3] Univ Bordeaux, Bordeaux, France
[4] Hosp Bordeaux, Bordeaux, France
[5] Canceropole Grand Sud Ouest, Toulouse, France
[6] Wellcome Trust Res Labs, London, England
[7] Hosp Sick Children, Toronto, ON M5G 1X8, Canada
[8] Global VetPathol, Montgomery Village, MD USA
关键词
mutant mouse; histopathology; phenotyping; knockout; training; COLLABORATIVE CROSS; ENU MUTAGENESIS; DATA-CAPTURE; UNDERSTAND; RESOURCE; SCREENS;
D O I
10.1177/0192623311399789
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
The fifth in a series of European workshops for veterinary and human pathologists, "Pathology of the Laboratory Mouse: An International Workshop on Challenges for High Throughput Phenotyping," was held in Bordeaux, France, from September 30 to October 1, 2010. In this report we outline the rationale for setting up this workshop series, summarize our experience, and suggest approaches for optimizing histopathology phenotyping for gene function discovery.
引用
收藏
页码:559 / 562
页数:4
相关论文
共 50 条
  • [31] High-throughput multimodal automated phenotyping (MAP) with application to PheWAS
    Liao, Katherine R.
    Sun, Jiehuan
    Cai, Tianrun A.
    Link, Nicholas
    Hong, Chuan
    Huang, Jie
    Huffman, Jennifer E.
    Gronsbell, Jessica
    Zhang, Yichi
    Ho, Yuk-Lam
    Castro, Victor
    Gainer, Vivian
    Murphy, Shawn N.
    ODonnell, Christopher J.
    Gaziano, J. Michael
    Cho, Kelly
    Szolovits, Peter
    Kohane, Isaac S.
    Yu, Sheng
    Cai, Tianxi
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2019, 26 (11) : 1255 - 1262
  • [32] Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles
    Hu, Yuncai
    Knapp, Samuel
    Schmidhalter, Urs
    REMOTE SENSING, 2020, 12 (03)
  • [33] TRACKING C. ELEGANS SWIMMING FOR HIGH-THROUGHPUT PHENOTYPING
    Restif, Christophe
    Ibanez-Ventoso, Carolina
    Driscoll, Monica
    Metaxas, Dimitris
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 1542 - 1548
  • [34] Image-Based High-Throughput Phenotyping in Horticultural Crops
    Abebe, Alebel Mekuriaw
    Kim, Younguk
    Kim, Jaeyoung
    Kim, Song Lim
    Baek, Jeongho
    PLANTS-BASEL, 2023, 12 (10):
  • [35] Field high-throughput phenotyping: the new crop breeding frontier
    Luis Araus, Jose
    Cairns, Jill E.
    TRENDS IN PLANT SCIENCE, 2014, 19 (01) : 52 - 61
  • [36] Surrogate-assisted feature extraction for high-throughput phenotyping
    Yu, Sheng
    Chakrabortty, Abhishek
    Liao, Katherine P.
    Cai, Tianrun
    Ananthakrishnan, Ashwin N.
    Gainer, Vivian S.
    Churchill, Susanne E.
    Szolovits, Peter
    Murphy, Shawn N.
    Kohane, Isaac S.
    Cai, Tianxi
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (E1) : E143 - E149
  • [37] Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening
    Adams, David
    Baldock, Richard
    Bhattacharya, Shoumo
    Copp, Andrew J.
    Dickinson, Mary
    Greene, Nicholas D. E.
    Henkelman, Mark
    Justice, Monica
    Mohun, Timothy
    Murray, Stephen A.
    Pauws, Erwin
    Raess, Michael
    Rossant, Janet
    Weaver, Tom
    West, David
    DISEASE MODELS & MECHANISMS, 2013, 6 (03) : 571 - 579
  • [38] High-throughput mouse phenomics for characterizing mammalian gene function
    Brown, Steve D. M.
    Holmes, Chris C.
    Mallon, Ann-Marie
    Meehan, Terrence F.
    Smedley, Damian
    Wells, Sara
    NATURE REVIEWS GENETICS, 2018, 19 (06) : 357 - 370
  • [39] Soft windowing application to improve analysis of high-throughput phenotyping data
    Haselimashhadi, Hamed
    Mason, Jeremy C.
    Munoz-Fuentes, Violeta
    Lopez-Gomez, Federico
    Babalola, Kolawole
    Acar, Elif F.
    Kumar, Vivek
    White, Jacqui
    Flenniken, Ann M.
    King, Ruairidh
    Straiton, Ewan
    Seavitt, John Richard
    Gaspero, Angelina
    Garza, Arturo
    Christianson, Audrey E.
    Hsu, Chih-Wei
    Reynolds, Corey L.
    Lanza, Denise G.
    Lorenzo, Isabel
    Green, Jennie R.
    Gallegos, Juan J.
    Bohat, Ritu
    Samaco, Rodney C.
    Veeraragavan, Surabi
    Kim, Jong Kyoung
    Miller, Gregor
    Fuchs, Helmult
    Garrett, Lillian
    Becker, Lore
    Kang, Yeon Kyung
    Clary, David
    Cho, Soo Young
    Tamura, Masaru
    Tanaka, Nobuhiko
    Soo, Kyung Dong
    Bezginov, Alexandr
    About, Ghina Bou
    Champy, Marie-France
    Vasseur, Laurent
    Leblanc, Sophie
    Meziane, Hamid
    Selloum, Mohammed
    Reilly, Patrick T.
    Spielmann, Nadine
    Maier, Holger
    Gailus-Durner, Valerie
    Sorg, Tania
    Hiroshi, Masuya
    Yuichi, Obata
    Heaney, Jason D.
    BIOINFORMATICS, 2020, 36 (05) : 1492 - 1500
  • [40] RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)
    Kefauver, Shawn C.
    El-Haddad, George
    Vergara-Diaz, Omar
    Luis Arausa, Jose
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637