Positive block matrices and numerical ranges

被引:16
|
作者
Bourin, Jean-Christophe [1 ]
Mhanna, Antoine [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16 Route Gray, F-25030 Besancon, France
关键词
NORM INEQUALITIES; OPERATORS;
D O I
10.1016/j.crma.2017.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any positive matrix Mpartitioned in four n-by-n blocks satisfies the unitarily invariant norm inequality parallel to M parallel to <= parallel to M1,1 + M2,2 + omega I parallel to, where omega is the width of the numerical range of M1,2. Some related inequalities and a reverse Lidskii majorization are given. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:1077 / 1081
页数:5
相关论文
共 50 条
  • [21] Indefinite higher-rank numerical ranges
    Bebiano, N.
    da Providencia, J.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (09) : 1009 - 1026
  • [22] Completely positive mappings and mean matrices
    Besenyei, Adam
    Petz, Denes
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 984 - 997
  • [23] A note on norm inequalities for positive matrices
    Zhang, Feng
    Xu, Jinli
    SCIENCEASIA, 2020, 46 (06): : 753 - 755
  • [24] Positive linear maps on normal matrices
    Bourin, Jean-Christophe
    Lee, Eun-Young
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (12)
  • [25] On the Instability of the Essential Spectrum for Block Jacobi Matrices
    Kupin, S.
    Naboko, S.
    CONSTRUCTIVE APPROXIMATION, 2018, 48 (03) : 473 - 500
  • [26] Multiplicative preservers of higher-dimensional numerical ranges
    Chen, Chaoqun
    Lu, Fangyan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 490 : 186 - 195
  • [27] Numerical radius inequalities for operator matrices
    Bani-Domi, Wathiq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04) : 421 - 427
  • [28] NUMERICAL RADIUS OF KRONECKER PRODUCT OF MATRICES
    Sababheh, Mohammad
    Moradi, Hamid Reza
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2943 - 2954
  • [29] Numerical radius inequalities of sectorial matrices
    Bhunia, Pintu
    Paul, Kallol
    Sen, Anirban
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
  • [30] Singular value inequalities involving convex and concave functions of positive semidefinite matrices
    Alrimawi, Fadi
    Hirzallah, Omar
    Kittaneh, Fuad
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (04) : 1257 - 1273