GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS

被引:1
作者
Dhara, Basudeb [1 ]
De Filippis, Vincenzo [2 ]
Pradhan, Krishna Gopal [1 ]
机构
[1] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[2] Univ Messina, Dept Math & Comp Sci, I-98166 Messina, Italy
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2015年 / 19卷 / 03期
关键词
Prime ring; Derivation; Generalized derivation; Extended centroid; Utumi quotient ring; MULTILINEAR POLYNOMIALS;
D O I
10.11650/tjm.19.2015.4043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a noncommutative prime ring with its Utumi ring of quotients U, C = Z(U) the extended centroid of R, F a generalized derivation of R and I a nonzero ideal of R. Suppose that there exists 0 not equal a is an element of R such that a(F([x, y])(n) - [x, y]) = 0 for all x, y is an element of I, where n >= 2 is a fixed integer. Then one of the following holds: 1. char (R) not equal 2, R subset of M-2(C), F(x) = bx for all x is an element of R with a(b - 1) = 0 (In this case n is an odd integer); 2. char (R) = 2, R subset of M-2(C) and F(x) = bx + [c, x] for all x is an element of R with a(b(n) - 1) = 0.
引用
收藏
页码:943 / 952
页数:10
相关论文
共 16 条