Long-Term Degradation of Passivated Emitter and Rear Contact Silicon Solar Cell under Light and Heat

被引:2
作者
Xiao, Chuanxiao [1 ]
Johnston, Steve [1 ]
Jiang, Chun-Sheng [1 ]
LaSalvia, Vincenzo [1 ]
Sulas-Kern, Dana B. [1 ]
Kempe, Michael D. [1 ]
Young, David L. [1 ]
Jordan, Dirk C. [1 ]
Al-Jassim, Mowafak M. [1 ]
Repins, Ingrid [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
characterizations; long-term degradations; mechanisms; passivated emitter and rear contact; solar cells; CRYSTALLINE SILICON; INTRINSIC SILICON; PERFORMANCE; FAILURE; MODULES; RATES;
D O I
10.1002/solr.202100727
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Advanced designs enable high-efficiency solar cells; however, more complex structures create new long-term stability concerns. Herein, the long-term degradation processes affecting advanced silicon solar cells using laboratory-based illumination and heating over hundreds of hours are investigated. The activation energy for the degradation of voltage is estimated and the degradation rates to normal solar cell operating temperature ranges are extrapolated. The cell degradation observed at high temperatures in the lab is kinetically similar to the process affecting field-deployed modules contributing to 0.37% year(-1) of annualized degradation. Electroluminescence and photoluminescence mapping show that the degradation is dominated by minority carrier lifetime reduction. Suns-open-circuit voltage and light beam-induced current results indicate that the degradation could result from passivation degradation at the surface or defect formation in the near-subsurface region, leading to increased minority carrier recombination. This work highlights a long-term degradation process under elevated temperature and illumination that may continue to affect cells in an irreversible manner that is separate from recoverable light-induced degradation and light- and elevated temperature-induced degradation.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Dark Lock-in Thermography Identifies Solder Bond Failure as the Root Cause of Series Resistance Increase in Fielded Solar Modules [J].
Asadpour, Reza ;
Sulas-Kern, Dana B. ;
Johnston, Steve ;
Meydbray, Jenya ;
Alam, Muhammad A. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (05) :1409-1416
[2]   Gettering of transition metal impurities during phosphorus emitter diffusion in multicrystalline silicon solar cell processing [J].
Bentzen, A. ;
Holt, A. ;
Kopecek, R. ;
Stokkan, G. ;
Christensen, J. S. ;
Svensson, B. G. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (09)
[3]  
Bothe K, 2003, WORL CON PHOTOVOLT E, P1077
[4]   The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review [J].
Carvalho de Oliveira, Michele Candida ;
Alves Cardoso Diniz, Antonia Sonia ;
Viana, Marcelo Machado ;
Cunha Lins, Vanessa de Freitas .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :2299-2317
[5]   Progress in the understanding of light- and elevated temperature-induced degradation in silicon solar cells: A review [J].
Chen, Daniel ;
Vaqueiro Contreras, Michelle ;
Ciesla, Alison ;
Hamer, Phillip ;
Hallam, Brett ;
Abbott, Malcolm ;
Chan, Catherine .
PROGRESS IN PHOTOVOLTAICS, 2021, 29 (11) :1180-1201
[6]   Effect of micro cracks on photovoltaic output power: case study based on real time long term data measurements [J].
Dhimish, Mahmoud ;
Holmes, Violeta ;
Dales, Mark ;
Mehrdadi, Bruce .
MICRO & NANO LETTERS, 2017, 12 (10) :803-807
[7]   Improved iron gettering of contaminated multicrystalline silicon by high-temperature phosphorus diffusion [J].
Fenning, D. P. ;
Zuschlag, A. S. ;
Bertoni, M. I. ;
Lai, B. ;
Hahn, G. ;
Buonassisi, T. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (21)
[8]   Mass production of p-type Cz silicon solar cells approaching average stable conversion efficiencies of 22 % [J].
Fertig, F. ;
Lantzsch, R. ;
Mohr, A. ;
Schaper, M. ;
Bartzsch, M. ;
Wissen, D. ;
Kersten, F. ;
Mette, A. ;
Peters, S. ;
Eidner, A. ;
Cieslak, J. ;
Duncker, K. ;
Junghaenel, M. ;
Jarzembowski, E. ;
Kauert, M. ;
Faulwetter-Quandt, B. ;
Meissner, D. ;
Reiche, B. ;
Geissler, S. ;
Hoernlein, S. ;
Klenke, C. ;
Niebergall, L. ;
Schoenmann, A. ;
Weihrauch, A. ;
Stenzel, F. ;
Hofmann, A. ;
Rudolph, T. ;
Schwabedissen, A. ;
Gundermann, M. ;
Fischer, M. ;
Mueller, J. W. ;
Jeong, D. J. W. .
7TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2017, 2017, 124 :338-345
[9]   OPTICAL-PROPERTIES OF INTRINSIC SILICON AT 300 K [J].
GREEN, MA ;
KEEVERS, MJ .
PROGRESS IN PHOTOVOLTAICS, 1995, 3 (03) :189-192
[10]   Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients [J].
Green, Martin A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) :1305-1310