Algebraicity of the near central non-critical values of symmetric fourth L-functions for Hilbert modular forms

被引:2
|
作者
Chen, Shih-Yu [1 ]
机构
[1] Acad Sinica, Inst Math, 6F Astron Math Bldg,1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
关键词
Special values of L-functions; Whittaker periods for GL(3); CUSP FORMS; SERIES; REPRESENTATIONS; MOTIVES; SQUARE; GL(2);
D O I
10.1016/j.jnt.2021.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Pi be a cohomological irreducible cuspidal automorphic representation of GL(2)(A(F)) with central character omega(Pi) over a totally real number field F. In this paper, we prove the algebraicity of the near central non-critical value of the symmetric fourth L-function of Pi twisted by omega(-2)(Pi). The algebraicity is expressed in terms of the Petersson norm of the normalized newform of Pi and the top degree Whittaker period of the Gelbart-Jacquet lift Sym(2)Pi of Pi. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:269 / 315
页数:47
相关论文
共 17 条