Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation

被引:89
作者
Han, Shaobo [1 ,2 ,5 ]
Ruoko, Tero-Petri [1 ]
Gladisch, Johannes [1 ,2 ]
Erlandsson, Johan [3 ]
Wagberg, Lars [3 ,4 ]
Crispin, Xavier [1 ,2 ]
Fabiano, Simone [1 ,2 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrkoping, Sweden
[2] Linkoping Univ, Wallenberg Wood Sci Ctr, SE-60174 Norrkoping, Sweden
[3] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Teknikringen 56, S-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Wallenberg Wood Sci Ctr, Teknikringen 56, S-10044 Stockholm, Sweden
[5] Wuyi Univ, Sch Text Mat & Engn, 22 Dongchengcun, Jiangmen 529020, Peoples R China
基金
瑞典研究理事会;
关键词
cellulose aerogels; freeze-drying; PEDOT; PSS; solar steam generation; water purification; FILM; EVAPORATION; MEMBRANES; SALINITY; PEDOT;
D O I
10.1002/adsu.202000004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Seawater desalination and wastewater purification technologies are the main strategies against the global fresh water shortage. Among these technologies, solar-driven evaporation is effective in extracting fresh water by efficiently exploiting solar energy. However, building a sustainable and low-cost solar steam generator with high conversion efficiency is still a challenge. Here, pure organic aerogels comprising a cellulose scaffold decorated with an organic conducting polymer absorbing in the infrared are employed to establish a high performance solar steam generator. The low density of the aerogel ensures minimal material requirements, while simultaneously satisfying efficient water transport. To localize the absorbed solar energy and make the system floatable, a porous floating and thermal-insulating foam is placed between the water and the aerogel. Thanks to the high absorbance of the aerogel and the thermal-localization performance of the foam, the system exhibits a high water evaporation rate of 1.61 kg m(-2) h(-1) at 1 kW m(-2) under 1 sun irradiation, which is higher than most reported solar steam generation devices.
引用
收藏
页数:7
相关论文
共 55 条
  • [1] Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation
    Bae, Kyuyoung
    Kang, Gumin
    Cho, Suehyun K.
    Park, Wounjhang
    Kim, Kyoungsik
    Padilla, Willie J.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [2] Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
  • [3] Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/nmat3824, 10.1038/NMAT3824]
  • [4] Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole
    Culebras, Mario
    Uriol, Belen
    Gomez, Clara M.
    Cantarero, Andres
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (23) : 15140 - 15145
  • [5] Ocean Salinity and the Global Water Cycle
    Durack, Paul J.
    [J]. OCEANOGRAPHY, 2015, 28 (01) : 20 - 31
  • [6] Thin film technology for solar steam generation: A new dawn
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Ali, Mohamed Kamal Ahmed
    Shaibo, J.
    Edreis, Elbager M. A.
    Abdelhamid, Talaat
    Chun Du
    Zhang Haiou
    [J]. SOLAR ENERGY, 2019, 177 : 561 - 575
  • [7] Poly(ethylene imine) Impurities Induce n-doping Reaction in Organic (Semi)Conductors
    Fabiano, Simone
    Braun, Slawomir
    Liu, Xianjie
    Weverberghs, Eric
    Gerbaux, Pascal
    Fahlman, Mats
    Berggren, Magnus
    Crispin, Xavier
    [J]. ADVANCED MATERIALS, 2014, 26 (34) : 6000 - +
  • [8] A Flexible, Self-Floating Composite for Efficient Water Evaporation
    Fang, Zhenxing
    Jiao, Shihui
    Wang, Boran
    Yin, Wen
    Pang, Guangsheng
    [J]. GLOBAL CHALLENGES, 2019, 3 (06)
  • [9] Solar steam generation by heat localization
    Ghasemi, Hadi
    Ni, George
    Marconnet, Amy Marie
    Loomis, James
    Yerci, Selcuk
    Miljkovic, Nenad
    Chen, Gang
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Thermo-mechanical behavior of graphene oxide hydrogel
    Ghosh, Rituparna
    Boruah, Buddha Deka
    Misra, Abha
    [J]. MATERIALS RESEARCH EXPRESS, 2017, 4 (02):