The quaternionic evolution operator

被引:43
作者
Colombo, Fabrizio [1 ]
Sabadini, Irene [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Right and left linear quaternionic operators; Quaternionic semigroup; Quaternionic group; Bounded and unbounded quaternionic generators; Hille-Phillips-Yosida theorem in the quaternionic setting; S-resolvent operator; S-spectrum; SLICE MONOGENIC FUNCTIONS; FUNCTIONAL-CALCULUS; REGULAR FUNCTIONS; HYPERHOLOMORPHIC FUNCTIONS; NONCOMMUTING OPERATORS; CONSEQUENCES; FORMULA; KERNEL;
D O I
10.1016/j.aim.2011.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the recent years, the notion of slice regular functions has allowed the introduction of a quaternionic functional calculus. In this paper, motivated also by the applications in quaternionic quantum mechanics, see Adler (1995) [1], we study the quaternionic semigroups and groups generated by a quaternionic (bounded or unbounded) linear operator T = T-0 + iT(1)+ iT(2) + kT(3). It is crucial to note that we consider operators with components T-l (l = 0, 1, 2, 3) that do not necessarily commute. Among other results, we prove the quaternionic version of the classical Hille-Phillips-Yosida theorem. This result is based on the fact that the Laplace transform of the quaternionic semigroup e(tT) is the S-resolvent operator (T-2 - 2Re[S]T + vertical bar s vertical bar I-2)(-1) ((s) over tildeI - T), the quatemionic analogue of the classical resolvent operator. The noncommutative setting entails that the results we obtain are somewhat different from their analogues in the complex setting. In particular, we have four possible formulations according to the use of left or right slice regular functions for left or right linear operators. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1772 / 1805
页数:34
相关论文
共 25 条
[1]  
Adler SL., 1995, QUATERNIONIC QUANTUM
[2]  
ANDERSON F., 1992, Rings and Categories of Modules
[3]  
Brackx F., 1982, PITMAN RES NOTES MAT, V76
[4]  
Colombo F., 2004, PROG MATH PHYS, V39
[5]   A new functional calculus for noncommuting operators [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (08) :2255-2274
[6]  
Colombo F, 2011, PROG MATH, V289, P1, DOI 10.1007/978-3-0348-0110-2
[7]   The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators [J].
Colombo, Fabrizio ;
Sabadini, Irene .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :655-679
[8]   Duality theorems for slice hyperholomorphic functions [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 645 :85-104
[9]   An extension theorem for slice monogenic functions and some of its consequences [J].
Colombo, Fabrizio ;
Sabadini, Irene ;
Struppa, Daniele C. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 177 (01) :369-389
[10]   On the formulations of the quaternionic functional calculus [J].
Colombo, Fabrizio ;
Sabadini, Irene .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (10) :1490-1508