Maximum-likelihood decoding of Reed-Solomon codes is NP-hard

被引:45
作者
Guruswami, V [1 ]
Vardy, A
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Comp Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
linear codes; maximum-likelihood decoding; NP-hard problems; Reed-Solomon codes;
D O I
10.1109/TIT.2005.850102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Maximum-likelihood decoding is one of the central algorithmic problems in coding theory. It has been known for over 25 years that maximum-likelihood decoding of general linear codes is NP-hard. Nevertheless, it was so far unknown whether maximum-likelihood decoding remains hard for any specific family of codes with nontrivial algebraic structure. In this paper, we prove that maximum-likelihood decoding is NP-hard for the family of Reed-Solomon codes. We moreover show that maximum-likelihood decoding of Reed-Solomon codes remains hard even with unlimited preprocessing, thereby strengthening a result of Bruck and Naor.
引用
收藏
页码:2249 / 2256
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]   The hardness of approximate optima in lattices, codes, and systems of linear equations [J].
Arora, S ;
Babai, L ;
Stern, J ;
Sweedyk, Z .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (02) :317-331
[3]  
BARG A, 1994, PROBL PEREDACHI INF, V30, P23
[4]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[5]   THE HARDNESS OF DECODING LINEAR CODES WITH PREPROCESSING [J].
BRUCK, J ;
NAOR, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (02) :381-385
[6]  
Cohen G, 1997, COVERING CODES
[7]   The parametrized complexity of some fundamental problems in coding theory [J].
Downey, RG ;
Fellows, MR ;
Vardy, A ;
Whittle, G .
SIAM JOURNAL ON COMPUTING, 1999, 29 (02) :545-570
[8]   Hardness of approximating the minimum distance of a linear code [J].
Dumer, I ;
Micciancio, D ;
Sudan, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) :22-37
[9]   The inapproximability of lattice and coding problems with preprocessing [J].
Feige, U ;
Micciancio, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (01) :45-67
[10]   HIGHLY RESILIENT CORRECTORS FOR POLYNOMIALS [J].
GEMMELL, P ;
SUDAN, M .
INFORMATION PROCESSING LETTERS, 1992, 43 (04) :169-174