Magnetic nanofluid based non-enzymatic sensor for urea detection

被引:32
作者
Zaibudeen, A. W. [1 ]
Philip, John [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, HBNI, Met & Mat Grp, SMARTS,CSTD, Kalpakkam 603102, Tamil Nadu, India
关键词
Urea sensor; Nanofluid; Optical sensor; Polymer; Non-enzymatic; SODIUM DODECYL-SULFATE; ACRYLIC-ACID; POLY(ACRYLIC ACID); MICELLE FORMATION; POLYMER; NANOPARTICLES; BEHAVIOR; DENATURATION; SURFACTANT; COPOLYMERS;
D O I
10.1016/j.snb.2017.08.065
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate a simple, inexpensive and non-enzymatic optical probe for the detection of urea using functionalized magnetic nanofluid. The nanofluid used here is an oil-in-water magnetic nanoemulsion containing superparamagnetic iron oxide nanoparticles of size similar to 10 nm. Under a constant magnetic field (similar to 90 G), the magnetic emulsion, forms a one dimensional Bragg diffraction grating with a fixed interparticle spacing. In the presence of urea, the probe showed a large wavelength shift in the visible wavelength range of 880-600 nm, due to complexation of urea with the functional moieties that dramatically changes the electrostatic repulsion between emulsion droplets or conformation of adsorbed polymer. The functional moieties, sodium dodecyl sulphate, poly acrylic acid and poly(ethylene oxide)block-poly(propylene oxide)-block-poly(ethylene oxide) copolymer are found to be suitable for the measurement of urea in the concentrations range 0.003-0.6, 0.18-33.3 and 2.4-334 g/L, respectively. PAA stabilized emulsion is found to be suitable for the selective detection of urea in the presence of biologically important cations such as Na+ and Ca2+. The fast response time of the sensor (less than a second) and the wide urea detection capability are the unique features of the new sensor. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:720 / 728
页数:9
相关论文
共 50 条
  • [31] Highly sensitive and selective rGO based Non-Enzymatic electrochemical sensor for propamocarb fungicide pesticide detection
    Tasaltin, Nevin
    Karakus, Selcan
    Tasaltin, Cihat
    Baytemir, Gulsen
    FOOD CHEMISTRY, 2022, 372
  • [32] Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide
    Soomro, Razium Ali
    Nafady, Aynam
    Ibupoto, Zafar Hussain
    Sirajuddin
    Sherazi, Syed Tufail Hussain
    Willander, Magnus
    Abro, Muhammad Ishaq
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 34 : 373 - 381
  • [33] Non-enzymatic free bilirubin electrochemical sensor based on ceria nanocube
    Lu, Zhan-Jun
    Cheng, Yarong
    Zhang, Yuan
    Wang, Xuefeng
    Xu, Pengcheng
    Yu, Haitao
    Li, Xinxin
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 329
  • [34] A novel NiO/C@rGO nanocomposite derived from Ni(gallate): A non-enzymatic electrochemical glucose sensor
    Imanzadeh, Hamideh
    Amiri, Mandana
    Nozari-Asbemarz, Mehran
    MICROCHEMICAL JOURNAL, 2024, 199
  • [35] Fabrication and characterization of non-enzymatic glucose sensor based on ternary NiO/CuO/polyaniline nanocomposite
    Ghanbari, Kh.
    Babaei, Z.
    ANALYTICAL BIOCHEMISTRY, 2016, 498 : 37 - 46
  • [36] A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode
    Rahim, Abdur
    Rehman, Zia Ur
    Mir, Sadullah
    Muhammad, Nawshad
    Rehman, Fozia
    Nawaz, Mian Hasnain
    Yaqub, Mustansara
    Siddiqi, Saadat Anwar
    Chaudhry, Aqif Anwar
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 248 : 425 - 431
  • [37] Flexible electrochemical sensor based on laser scribed Graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection
    Aparicio-Martinez, Eider
    Ibarra, Adriana
    Estrada-Moreno, Ivan A.
    Osuna, Velia
    Dominguez, Rocio B.
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 301
  • [38] Fabrication of highly sensitive non-enzymatic sensor based on Pt/PVF modified Pt electrode for detection of glucose
    Malhotra, Shveta
    Tang, Yijun
    Varshney, Pradeep K.
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2020, 17 (03) : 521 - 531
  • [39] Fabrication of highly sensitive non-enzymatic sensor based on Pt/PVF modified Pt electrode for detection of glucose
    Shveta Malhotra
    Yijun Tang
    Pradeep K. Varshney
    Journal of the Iranian Chemical Society, 2020, 17 : 521 - 531
  • [40] Non-Enzymatic Glucose Sensor Based on Well-Crystallized ZnO Nanoparticles
    Singh, Kulvinder
    Umar, Ahmad
    Kumar, Arun
    Chaudhary, G. R.
    Singh, Sukhjinder
    Mehta, S. K.
    SCIENCE OF ADVANCED MATERIALS, 2012, 4 (09) : 994 - 1000