Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

被引:13
作者
Kagei, Yoshiyuki [1 ]
机构
[1] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
关键词
D O I
10.2977/prims/1201012041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Asymptotic behavior of solutions to the linearized compressible Navier-Stokes equation around a given constant state is considered in an infinite layer Rn-1 x (0,alpha), n >= 2, under the no slip boundary condition for the momentum. The LP decay estimates of the associated semigroup are established for all 1 <= p <= infinity. It is also shown that the time-asymptotic leading part of the sernigroup is given by an n - 1 dimensional heat semigroup.
引用
收藏
页码:763 / 794
页数:32
相关论文
共 14 条
[1]   On a resolvent estimate of the Stokes equation on an infinite layer [J].
Abe, T ;
Shibata, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) :469-497
[2]   On a Resolvent Estimate of the Stokes Equation on an Infinite Layer Part 2, λ=0 Case [J].
Abe, Takayuki ;
Shibata, Yoshihiro .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (03) :245-274
[3]  
Abels H, 2005, DIFFER INTEGRAL EQU, V18, P1081
[4]  
BEALE JT, 1984, RECENT TOPICS NONLIN, V2, P1
[5]   Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves [J].
Hoff, D ;
Zumbrun, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (04) :597-614
[6]   MULTIDIMENSIONAL DIFFUSION WAVES FOR THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE FLOW [J].
HOFF, D ;
ZUMBRUN, K .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (02) :603-676
[7]   Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 177 (02) :231-330
[8]   On large-time behavior of solutions to the compressible navier-stokes equations in the half space in R3 [J].
Kagei, Y ;
Kobayashi, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (02) :89-159
[9]  
KAGEI Y, MHF PREPRINT SERIES
[10]  
Kato T., 1980, PERTURBATION THEORY