Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces

被引:35
作者
Manzo, Sebastian [1 ]
Strohbeen, Patrick J. [1 ]
Lim, Zheng Hui [1 ]
Saraswat, Vivek [1 ]
Du, Dongxue [1 ]
Xu, Shining [2 ]
Pokharel, Nikhil [2 ]
Mawst, Luke J. [2 ]
Arnold, Michael S. [1 ]
Kawasaki, Jason K. [1 ]
机构
[1] Univ Wisconsin, Mat Sci & Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
OVERGROWTH; GAAS; LAYER; OXIDATION; GROWTH; SI;
D O I
10.1038/s41467-022-31610-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Remote epitaxy represents a promising method for the synthesis of thin films on lattice-mismatched substrates, but its atomic-scale mechanisms are still unclear. Here, the authors demonstrate the growth of exfoliatable GaSb films on graphene-terminated GaSb (001) via seeded lateral epitaxy, showing that pinhole defects in graphene serve as selective nucleation sites. Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with in-situ electron diffraction and photoemission, plus ex-situ atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides an alternative route towards tuning the growth and properties of 3D epitaxial films and membranes on 2D material masks.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
Al Balushi ZY, 2016, NAT MATER, V15, P1166, DOI [10.1038/NMAT4742, 10.1038/nmat4742]
[2]   Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy [J].
Bae, Sang-Hoon ;
Lu, Kuangye ;
Han, Yimo ;
Kim, Sungkyu ;
Qiao, Kuan ;
Choi, Chanyeol ;
Nie, Yifan ;
Kim, Hyunseok ;
Kum, Hyun S. ;
Chen, Peng ;
Kong, Wei ;
Kang, Beom-Seok ;
Kim, Chansoo ;
Lee, Jaeyong ;
Baek, Yongmin ;
Shim, Jaewoo ;
Park, Jinhee ;
Joo, Minho ;
Muller, David A. ;
Lee, Kyusang ;
Kim, Jeehwan .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :272-+
[3]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[4]   Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy [J].
Briggs, Natalie ;
Bersch, Brian ;
Wang, Yuanxi ;
Jiang, Jue ;
Koch, Roland J. ;
Nayir, Nadire ;
Wang, Ke ;
Kolmer, Marek ;
Ko, Wonhee ;
Duran, Ana De La Fuente ;
Subramanian, Shruti ;
Dong, Chengye ;
Shallenberger, Jeffrey ;
Fu, Mingming ;
Zou, Qiang ;
Chuang, Ya-Wen ;
Gai, Zheng ;
Li, An-Ping ;
Bostwick, Aaron ;
Jozwiak, Chris ;
Chang, Cui-Zu ;
Rotenberg, Eli ;
Zhu, Jun ;
van Duin, Adri C. T. ;
Crespi, Vincent ;
Robinson, Joshua A. .
NATURE MATERIALS, 2020, 19 (06) :637-+
[5]   Aspects of native oxides etching on n-GaSb(100) surface [J].
Cotirlan, C. ;
Ghita, R. V. ;
Negrila, C. C. ;
Logofatu, C. ;
Frumosu, F. ;
Lungu, G. A. .
APPLIED SURFACE SCIENCE, 2016, 363 :83-90
[6]   Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes [J].
Du, Dongxue ;
Manzo, Sebastian ;
Zhang, Chenyu ;
Saraswat, Vivek ;
Genser, Konrad T. ;
Rabe, Karin M. ;
Voyles, Paul M. ;
Arnold, Michael S. ;
Kawasaki, Jason K. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   A Reconfigurable Remotely Epitaxial VO2 Electrical Heterostructure [J].
Guo, Yuwei ;
Sun, Xin ;
Jiang, Jie ;
Wang, Baiwei ;
Chen, Xinchun ;
Yin, Xuan ;
Qi, Wei ;
Gao, Lei ;
Zhang, Lifu ;
Lu, Zonghuan ;
Jia, Ru ;
Pendse, Saloni ;
Hu, Yang ;
Chen, Zhizhong ;
Wertz, Esther ;
Gall, Daniel ;
Feng, Jing ;
Lu, Toh-Ming ;
Shi, Jian .
NANO LETTERS, 2020, 20 (01) :33-42
[8]   Separation-Dependent Electronic Transparency of Monolayer Graphene Membranes on III-V Semiconductor Substrates [J].
He, Kevin T. ;
Koepke, Justin C. ;
Barraza-Lopez, Salvador ;
Lyding, Joseph W. .
NANO LETTERS, 2010, 10 (09) :3446-3452
[9]   Spatially controlled epitaxial growth of 2D heterostructures via defect engineering using a focused He ion beam [J].
Heilmann, Martin ;
Deinhart, Victor ;
Tahraoui, Abbes ;
Hoeflich, Katja ;
Lopes, J. Marcelo J. .
NPJ 2D MATERIALS AND APPLICATIONS, 2021, 5 (01)
[10]   InAs/GaSb/AlSb composite quantum well structure preparation with help of reflectance anisotropy spectroscopy [J].
Hospodkova, A. ;
Hulicius, E. ;
Pangrac, J. ;
Dominec, F. ;
Mikhailova, M. P. ;
Veinger, A. I. ;
Kochman, I. V. .
JOURNAL OF CRYSTAL GROWTH, 2017, 464 :206-210