Hemodynamic forces in endothelial dysfunction and vascular aging

被引:48
作者
Collins, Caitlin [1 ]
Tzima, Ellie [1 ]
机构
[1] Univ N Carolina, McAllister Heart Inst, Dept Cell & Mol Physiol, Chapel Hill, NC 27599 USA
关键词
Cardiovascular disease; Aging; Endothelial dysfunction; Shear stress; FLUID SHEAR-STRESS; CELL SENESCENCE; OXIDATIVE STRESS; PROTEIN-KINASE; SMALL GTPASES; ACTIVATION; FLOW; ATHEROSCLEROSIS; EXPRESSION; CDC42;
D O I
10.1016/j.exger.2010.09.010
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Aging is a key risk factor associated with the onset of cardiovascular disease. Notably, vascular aging and cardiovascular disease are both associated with endothelial dysfunction, or a marked decrease in production and bioavailability the vasodilator of nitric oxide (NO). As a result of decreased nitric oxide availability, aging vessels often exhibit endothelial cell senescence and increased oxidative stress. One of the most potent activators of NO production is fluid shear stress produced by blood flow. Interestingly, age-related decrease in NO production partially results from endothelial insensitivity to shear stress. While the endothelial cell response to fluid shear stress has been well characterized in recent years, the exact mechanisms of how the mechanical force of fluid shear stress is converted into intracellular biochemical signals are relatively unknown. Therefore, gaining a better knowledge of mechanosignaling events in endothelial cells may prove to be beneficial for developing potential therapies for cardiovascular diseases. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 49 条
[1]   WALL SHEAR-STRESS RATHER THAN SHEAR RATE REGULATES CYTOPLASMIC CA++ RESPONSES TO FLOW IN VASCULAR ENDOTHELIAL-CELLS [J].
ANDO, J ;
OHTSUKA, A ;
KORENAGA, R ;
KAWAMURA, T ;
KAMIYA, A .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1993, 190 (03) :716-723
[2]   A flow-activated chloride-selective membrane current in vascular endothelial cells [J].
Barakat, AI ;
Leaver, EV ;
Pappone, PA ;
Davies, PF .
CIRCULATION RESEARCH, 1999, 85 (09) :820-828
[3]   Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells [J].
Birukov, KG ;
Birukova, AA ;
Dudek, SM ;
Verin, AD ;
Crow, MT ;
Zhan, X ;
DePaola, N ;
Garcia, JGN .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2002, 26 (04) :453-464
[4]   Focal adhesions, contractility, and signaling [J].
Burridge, K ;
ChrzanowskaWodnicka, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :463-518
[5]   G protein-coupled receptors sense fluid shear stress in endothelial cells [J].
Chachisvilis, Mirianas ;
Zhang, Yan-Liang ;
Frangos, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (42) :15463-15468
[6]   FLOW-MEDIATED ENDOTHELIAL MECHANOTRANSDUCTION [J].
DAVIES, PF .
PHYSIOLOGICAL REVIEWS, 1995, 75 (03) :519-560
[7]   Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2) [J].
Dekker, RJ ;
van Soest, S ;
Fontijn, RD ;
Salamanca, S ;
de Groot, PG ;
VanBavel, E ;
Pannekoek, H ;
Horrevoets, AJG .
BLOOD, 2002, 100 (05) :1689-1698
[8]   The Effect of Physical Exercise on Endothelial Function [J].
Di Francescomarino, Samanta ;
Sciartilli, Adolfo ;
Di Valerio, Valentina ;
Di Baldassarre, Angela ;
Gallina, Sabina .
SPORTS MEDICINE, 2009, 39 (10) :797-812
[9]   Oxidative stress in vascular disease:: causes, defense mechanisms and potential therapies [J].
Foerstermann, Ulrich .
NATURE CLINICAL PRACTICE CARDIOVASCULAR MEDICINE, 2008, 5 (06) :338-349
[10]  
Girard Peggy R., 1993, Frontiers of Medical and Biological Engineering, V5, P31