Robust stabilization of uncertain descriptor fractional-order systems with the fractional order α(0 < α < 1)

被引:0
作者
Zhang, Xuefeng [1 ]
Li, Bingxin [1 ]
机构
[1] Northeastern Univ, Sch Sci, Shenyang 110004, Peoples R China
来源
PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC) | 2016年
关键词
Descriptor fractional-order system; Linear matrix inequalities (LMI); Robust stability; State feedback control; CONTROLLERS; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, a necessary and sufficient condition for uncertain descriptor fractional-order systems is given. The result is given in terms of linear matrix inequalities (LMI). The uncertainties are supposed to be time-invariant and norm-bounded appearing in the state matrix. Robust stability of the state feedback control for uncertain descriptor fractional-order systems with the fractional order alpha(0 < alpha < 1) is derived. Finally, a numerical example is given to verify the applicability of the proposed approach.
引用
收藏
页码:560 / 563
页数:4
相关论文
共 50 条
[41]   Robust Admissibility and Stabilization of Uncertain Singular Fractional-Order Linear Time-Invariant Systems [J].
Marir, Saliha ;
Chadli, Mohammed .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) :685-692
[42]   Dynamic robust stabilization of fractional-order linear systems with nonlinear uncertain parameters: an LMI approach [J].
Badri, Pouya ;
Sojoodi, Mahdi ;
Zavvari, Elyar .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2021, 50 (04) :434-457
[43]   Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems [J].
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia ;
Lu, Junwei .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12) :5480-5493
[44]   Robust stabilization of uncertain fractional-order systems based on T-S fuzzy model [J].
Ji, Yude ;
Yang, Liyun ;
Qiu, Jiqing .
2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, :3579-3584
[45]   Global stabilization of uncertain nonlinear systems via fractional-order PID [J].
Chen, Song ;
Chen, Tehuan ;
Chu, Jian ;
Xu, Chao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
[46]   Robust stability criteria for interval fractional-order systems: the 0<a<1 case [J].
Gao, Zhe ;
Liao, Xiao-Zhong .
Zidonghua Xuebao/Acta Automatica Sinica, 2012, 38 (02) :175-182
[47]   Impulse invariance-based method for the computation of fractional integral of order 0 &lt; α &lt; 1 [J].
Ferdi, Youcef .
COMPUTERS & ELECTRICAL ENGINEERING, 2009, 35 (05) :722-729
[48]   Robust dissipativity and dissipation of a class of fractional-order uncertain linear systems [J].
Chen, Liping ;
Yin, Hao ;
Wu, Ranchao ;
Yin, Lisheng ;
Chen, YangQuan .
IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (10) :1454-1465
[49]   Stabilization Analysis For Fractional-Order Systems With Input Delays [J].
Song, Xiaona ;
Liu, Shanzhong ;
Fu, Zhumu .
2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2013, :249-252
[50]   Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach [J].
Lu, Jun-Guo ;
Chen, Guanrong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1294-1299