The Effect of Northern Hemisphere Winds on the Meridional Overturning Circulation and Stratification

被引:11
|
作者
Cessi, Paola [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Meridional overturning circulation; SOUTHERN-OCEAN; MESOSCALE EDDIES; ATLANTIC; DRIVEN; TRANSPORT; MODEL; CLOSURE;
D O I
10.1175/JPO-D-18-0085.1
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The current paradigm for the meridional overturning cell and the associated middepth stratification is that the wind stress in the subpolar region of the Southern Ocean drives a northward Ekman flow, which, together with the global diapycnal mixing across the lower boundary of the middepth waters, feeds the upper branch of the interhemispheric overturning. The resulting mass transport proceeds to the Northern Hemisphere of the North Atlantic, where it sinks, to be eventually returned to the Southern Ocean at depth. Seemingly, the wind stress in the Atlantic basin plays no role. This asymmetry occurs because the Ekman transport in the Atlantic Ocean is assumed to return geostrophically at depths much shallower than those occupied by the interhemispheric overturning. However, this vertical separation fails in the North Atlantic subpolar gyre region. Using a conceptual model and an ocean general circulation model in an idealized geometry, we show that the westerly wind stress in the northern part of the Atlantic provides two opposing effects. Mechanically, the return of the Ekman transport in the North Atlantic opposes sinking in this region, reducing the total overturning and deepening the middepth stratification; thermodynamically, the subpolar gyre advects salt poleward, promoting Northern Hemisphere sinking. Depending on which mechanism prevails, increased westerly winds in the Northern Hemisphere can reduce or augment the overturning.
引用
收藏
页码:2495 / 2506
页数:12
相关论文
共 50 条
  • [41] Greenland Melt and the Atlantic Meridional Overturning Circulation
    Frajka-Williams, Eleanor
    Bamber, Jonathan L.
    Vage, Kjetil
    OCEANOGRAPHY, 2016, 29 (04) : 22 - 33
  • [42] The stability of an evolving Atlantic meridional overturning circulation
    Liu, Wei
    Liu, Zhengyu
    Hu, Aixue
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (08) : 1562 - 1568
  • [43] On the history of meridional overturning circulation schematic diagrams
    Richardson, Philip L.
    PROGRESS IN OCEANOGRAPHY, 2008, 76 (04) : 466 - 486
  • [44] An Indicator of the Multiple Equilibria Regime of the Atlantic Meridional Overturning Circulation
    Huisman, Selma E.
    den Toom, Matthijs
    Dijkstra, Henk A.
    Drijfhout, Sybren
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (03) : 551 - 567
  • [45] Atmospheric Origins of Variability in the South Atlantic Meridional Overturning Circulation
    Smith, Timothy
    Heimbach, Patrick
    JOURNAL OF CLIMATE, 2019, 32 (05) : 1483 - 1500
  • [46] Significance of Diapycnal Mixing Within the Atlantic Meridional Overturning Circulation
    Cimoli, Laura
    Mashayek, Ali
    Johnson, Helen L.
    Marshall, David P.
    Garabato, Alberto C. Naveira C.
    Whalen, Caitlin B.
    Vic, Clement
    de Lavergne, Casimir
    Alford, Matthew H.
    MacKinnon, Jennifer A.
    Talley, Lynne D.
    AGU ADVANCES, 2023, 4 (02):
  • [47] Possible Thermal Effect of Tibetan Plateau on the Atlantic Meridional Overturning Circulation
    Wen, Qin
    Yang, Haijun
    Yang, Kai
    Li, Gen
    Liu, Zhengyu
    Liu, Jian
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (04)
  • [48] Meridional overturning circulation: stability and ocean feedbacks in a box model
    Andrea A. Cimatoribus
    Sybren S. Drijfhout
    Henk A. Dijkstra
    Climate Dynamics, 2014, 42 : 311 - 328
  • [49] Lagrangian Analysis of the Meridional Overturning Circulation in an Idealized Ocean Basin
    Van Roekel, Luke P.
    Ito, Taka
    Haertel, Patrick T.
    Randall, David A.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2009, 39 (09) : 2175 - 2193
  • [50] Geostrophic Closure of the Zonally Averaged Atlantic Meridional Overturning Circulation
    Sevellec, Florian
    Huck, Thierry
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (03) : 895 - 917