Biparametric zero-modified power series distributions: Bayesian analysis under a reference prior approach

被引:0
作者
Conceicao, Katiane S. [1 ]
Tomazella, Vera [2 ]
Andrade, Marinho G. [1 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Dept Appl Math & Stat, Sao Paulo, Brazil
[2] Univ Fed Sao Carlos, Dept Stat, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Count data; power series distributions; reference prior; zero-inflated dataset; zero-deflated dataset; MODELS; PARAMETER;
D O I
10.1080/03610926.2016.1236960
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a Bayesian approach by considering a reference prior for estimating the parameters of biparametric zero-modified power series (ZMPS) distributions. The ZMPS distribution is an extension of the power series (PS) distribution family, allowing it to be adjusted to count data without previous knowledge of frequency of zero observations in the sample (e.g., zero-inflated or zero-deflated datasets). Simulation studies are presented in order to illustrate the performance of the proposed methodology. Applications of the proposed methodology involve the analysis of three real datasets.
引用
收藏
页码:10518 / 10536
页数:19
相关论文
共 22 条
[1]  
[Anonymous], 2010, R Foundation for Statistical Computing
[2]  
BAILEY BJR, 1990, J R STAT SOC C-APPL, V39, P107
[3]  
Bayarri MJ, 2008, IMS COLLECTIONS PUSH, V3, P105
[4]  
Berger J. O., 1992, Bayesian Statistics, V4, P35
[5]   ORDERED GROUP REFERENCE PRIORS WITH APPLICATION TO THE MULTINOMIAL PROBLEM [J].
BERGER, JO ;
BERNARDO, JM .
BIOMETRIKA, 1992, 79 (01) :25-37
[6]  
Bernardo JM, 2005, HANDB STAT, V25, P17, DOI 10.1016/S0169-7161(05)25002-2
[7]  
BERNARDO JM, 1979, J R STAT SOC B, V41, P113
[8]   Zero-modified Poisson model: Bayesian approach, influence diagnostics, and an application to a Brazilian leptospirosis notification data [J].
Conceicao, Katiane S. ;
Andrade, Marinho G. ;
Louzada, Francisco .
BIOMETRICAL JOURNAL, 2013, 55 (05) :661-678
[9]   Bayesian assessment of goodness of fit against nonparametric alternatives [J].
Conigliani, C ;
Castro, JI ;
O'Hagan, A .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (02) :327-342
[10]   NEW CLASS OF LOCATION-PARAMETER DISCRETE PROBABILITY-DISTRIBUTIONS AND THEIR CHARACTERIZATIONS [J].
CONSUL, PC .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (12) :4653-4666