The structural basis for cohesin-CTCF-anchored loops

被引:272
作者
Li, Yan [1 ]
Haarhuis, Judith H. I. [2 ]
Sedeno Cacciatore, Angela [2 ]
Oldenkamp, Roel [2 ]
van Ruiten, Marjon S. [2 ]
Willems, Laureen [2 ]
Teunissen, Hans [3 ]
Muir, Kyle W. [1 ,4 ]
de Wit, Elzo [3 ]
Rowland, Benjamin D. [2 ]
Panne, Daniel [1 ,5 ]
机构
[1] European Mol Biol Lab, Grenoble, France
[2] Netherlands Canc Inst, Div Gene Regulat, Amsterdam, Netherlands
[3] Netherlands Canc Inst, Oncode Inst, Div Gene Regulat, Amsterdam, Netherlands
[4] MRC Lab Mol Biol, Cambridge, England
[5] Univ Leicester, Leicester Inst Struct & Chem Biol, Dept Mol & Cell Biol, Leicester, Leics, England
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
FULLY-AUTOMATIC CHARACTERIZATION; HI-C REVEALS; DATA-COLLECTION; 3D GENOME; WAPL; CHROMOSOMES; RESOLUTION; MECHANISM; TOPOLOGY; DOMAINS;
D O I
10.1038/s41586-019-1910-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 angstrom, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL(2,3). Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF. The crystal structure of the SA2-SCC1 subunits of human cohesin in complex with CTCF reveals the molecular basis of the cohesin-CTCF interaction that enables the dynamic regulation of chromatin folding.
引用
收藏
页码:472 / +
页数:22
相关论文
共 74 条
[61]   Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture [J].
Rudan, Matteo Vietri ;
Barrington, Christopher ;
Henderson, Stephen ;
Ernst, Christina ;
Odom, Duncan T. ;
Tanay, Amos ;
Hadjur, Suzana .
CELL REPORTS, 2015, 10 (08) :1297-1309
[62]   Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes [J].
Sanborn, Adrian L. ;
Rao, Suhas S. P. ;
Huang, Su-Chen ;
Durand, Neva C. ;
Huntley, Miriam H. ;
Jewett, Andrew I. ;
Bochkov, Ivan D. ;
Chinnappan, Dharmaraj ;
Cutkosky, Ashok ;
Li, Jian ;
Geeting, Kristopher P. ;
Gnirke, Andreas ;
Melnikov, Alexandre ;
McKenna, Doug ;
Stamenova, Elena K. ;
Lander, Eric S. ;
Aiden, Erez Lieberman .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (47) :E6456-E6465
[63]   HiC-Pro: an optimized and flexible pipeline for Hi-C data processing [J].
Servant, Nicolas ;
Varoquaux, Nelle ;
Lajoie, Bryan R. ;
Viara, Eric ;
Chen, Chong-Jian ;
Vert, Jean-Philippe ;
Heard, Edith ;
Dekker, Job ;
Barillot, Emmanuel .
GENOME BIOLOGY, 2015, 16
[64]   Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1 [J].
Shintomi, Keishi ;
Hirano, Tatsuya .
GENES & DEVELOPMENT, 2009, 23 (18) :2224-2236
[65]   Protein production by auto-induction in high-density shaking cultures [J].
Studier, FW .
PROTEIN EXPRESSION AND PURIFICATION, 2005, 41 (01) :207-234
[66]   Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1 [J].
Svensson, Olof ;
Gilski, Maciej ;
Nurizzo, Didier ;
Bowler, Matthew W. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 :433-440
[67]   Fully automatic characterization and data collection from crystals of biological macromolecules [J].
Svensson, Olof ;
Malbet-Monaco, Stephanie ;
Popov, Alexander ;
Nurizzo, Didier ;
Bowler, Matthew W. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2015, 71 :1757-1767
[68]   CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription [J].
Tang, Zhonghui ;
Luo, Oscar Junhong ;
Li, Xingwang ;
Zheng, Meizhen ;
Zhu, Jacqueline Jufen ;
Szalaj, Przemyslaw ;
Trzaskoma, Pawel ;
Magalska, Adriana ;
Wlodarczyk, Jakub ;
Ruszczycki, Blazej ;
Michalski, Paul ;
Piecuch, Emaly ;
Wang, Ping ;
Wang, Danjuan ;
Tian, Simon Zhongyuan ;
Penrad-Mobayed, May ;
Sachs, Laurent M. ;
Ruan, Xiaoan ;
Wei, Chia-Lin ;
Liu, Edison T. ;
Wilczynski, Grzegorz M. ;
Plewczynski, Dariusz ;
Li, Guoliang ;
Ruan, Yijun .
CELL, 2015, 163 (07) :1611-1627
[69]   Overview of the CCP4 suite and current developments [J].
Winn, Martyn D. ;
Ballard, Charles C. ;
Cowtan, Kevin D. ;
Dodson, Eleanor J. ;
Emsley, Paul ;
Evans, Phil R. ;
Keegan, Ronan M. ;
Krissinel, Eugene B. ;
Leslie, Andrew G. W. ;
McCoy, Airlie ;
McNicholas, Stuart J. ;
Murshudov, Garib N. ;
Pannu, Navraj S. ;
Potterton, Elizabeth A. ;
Powell, Harold R. ;
Read, Randy J. ;
Vagin, Alexei ;
Wilson, Keith S. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2011, 67 :235-242
[70]   Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins [J].
Wutz, Gordana ;
Varnai, Csilla ;
Nagasaka, Kota ;
Cisneros, David A. ;
Stocsits, Roman R. ;
Tang, Wen ;
Schoenfelder, Stefan ;
Jessberger, Gregor ;
Muhar, Matthias ;
Hossain, M. Julius ;
Walther, Nike ;
Koch, Birgit ;
Kueblbeck, Moritz ;
Ellenberg, Jan ;
Zuber, Johannes ;
Fraser, Peter ;
Peters, Jan-Michael .
EMBO JOURNAL, 2017, 36 (24) :3573-3599