The structural basis for cohesin-CTCF-anchored loops

被引:259
作者
Li, Yan [1 ]
Haarhuis, Judith H. I. [2 ]
Sedeno Cacciatore, Angela [2 ]
Oldenkamp, Roel [2 ]
van Ruiten, Marjon S. [2 ]
Willems, Laureen [2 ]
Teunissen, Hans [3 ]
Muir, Kyle W. [1 ,4 ]
de Wit, Elzo [3 ]
Rowland, Benjamin D. [2 ]
Panne, Daniel [1 ,5 ]
机构
[1] European Mol Biol Lab, Grenoble, France
[2] Netherlands Canc Inst, Div Gene Regulat, Amsterdam, Netherlands
[3] Netherlands Canc Inst, Oncode Inst, Div Gene Regulat, Amsterdam, Netherlands
[4] MRC Lab Mol Biol, Cambridge, England
[5] Univ Leicester, Leicester Inst Struct & Chem Biol, Dept Mol & Cell Biol, Leicester, Leics, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
FULLY-AUTOMATIC CHARACTERIZATION; HI-C REVEALS; DATA-COLLECTION; 3D GENOME; WAPL; CHROMOSOMES; RESOLUTION; MECHANISM; TOPOLOGY; DOMAINS;
D O I
10.1038/s41586-019-1910-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 angstrom, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL(2,3). Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF. The crystal structure of the SA2-SCC1 subunits of human cohesin in complex with CTCF reveals the molecular basis of the cohesin-CTCF interaction that enables the dynamic regulation of chromatin folding.
引用
收藏
页码:472 / +
页数:22
相关论文
共 74 条
  • [61] Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture
    Rudan, Matteo Vietri
    Barrington, Christopher
    Henderson, Stephen
    Ernst, Christina
    Odom, Duncan T.
    Tanay, Amos
    Hadjur, Suzana
    [J]. CELL REPORTS, 2015, 10 (08): : 1297 - 1309
  • [62] Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
    Sanborn, Adrian L.
    Rao, Suhas S. P.
    Huang, Su-Chen
    Durand, Neva C.
    Huntley, Miriam H.
    Jewett, Andrew I.
    Bochkov, Ivan D.
    Chinnappan, Dharmaraj
    Cutkosky, Ashok
    Li, Jian
    Geeting, Kristopher P.
    Gnirke, Andreas
    Melnikov, Alexandre
    McKenna, Doug
    Stamenova, Elena K.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (47) : E6456 - E6465
  • [63] HiC-Pro: an optimized and flexible pipeline for Hi-C data processing
    Servant, Nicolas
    Varoquaux, Nelle
    Lajoie, Bryan R.
    Viara, Eric
    Chen, Chong-Jian
    Vert, Jean-Philippe
    Heard, Edith
    Dekker, Job
    Barillot, Emmanuel
    [J]. GENOME BIOLOGY, 2015, 16
  • [64] Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1
    Shintomi, Keishi
    Hirano, Tatsuya
    [J]. GENES & DEVELOPMENT, 2009, 23 (18) : 2224 - 2236
  • [65] Protein production by auto-induction in high-density shaking cultures
    Studier, FW
    [J]. PROTEIN EXPRESSION AND PURIFICATION, 2005, 41 (01) : 207 - 234
  • [66] Multi-position data collection and dynamic beam sizing: recent improvements to the automatic data-collection algorithms on MASSIF-1
    Svensson, Olof
    Gilski, Maciej
    Nurizzo, Didier
    Bowler, Matthew W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 433 - 440
  • [67] Fully automatic characterization and data collection from crystals of biological macromolecules
    Svensson, Olof
    Malbet-Monaco, Stephanie
    Popov, Alexander
    Nurizzo, Didier
    Bowler, Matthew W.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2015, 71 : 1757 - 1767
  • [68] CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription
    Tang, Zhonghui
    Luo, Oscar Junhong
    Li, Xingwang
    Zheng, Meizhen
    Zhu, Jacqueline Jufen
    Szalaj, Przemyslaw
    Trzaskoma, Pawel
    Magalska, Adriana
    Wlodarczyk, Jakub
    Ruszczycki, Blazej
    Michalski, Paul
    Piecuch, Emaly
    Wang, Ping
    Wang, Danjuan
    Tian, Simon Zhongyuan
    Penrad-Mobayed, May
    Sachs, Laurent M.
    Ruan, Xiaoan
    Wei, Chia-Lin
    Liu, Edison T.
    Wilczynski, Grzegorz M.
    Plewczynski, Dariusz
    Li, Guoliang
    Ruan, Yijun
    [J]. CELL, 2015, 163 (07) : 1611 - 1627
  • [69] Overview of the CCP4 suite and current developments
    Winn, Martyn D.
    Ballard, Charles C.
    Cowtan, Kevin D.
    Dodson, Eleanor J.
    Emsley, Paul
    Evans, Phil R.
    Keegan, Ronan M.
    Krissinel, Eugene B.
    Leslie, Andrew G. W.
    McCoy, Airlie
    McNicholas, Stuart J.
    Murshudov, Garib N.
    Pannu, Navraj S.
    Potterton, Elizabeth A.
    Powell, Harold R.
    Read, Randy J.
    Vagin, Alexei
    Wilson, Keith S.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2011, 67 : 235 - 242
  • [70] Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins
    Wutz, Gordana
    Varnai, Csilla
    Nagasaka, Kota
    Cisneros, David A.
    Stocsits, Roman R.
    Tang, Wen
    Schoenfelder, Stefan
    Jessberger, Gregor
    Muhar, Matthias
    Hossain, M. Julius
    Walther, Nike
    Koch, Birgit
    Kueblbeck, Moritz
    Ellenberg, Jan
    Zuber, Johannes
    Fraser, Peter
    Peters, Jan-Michael
    [J]. EMBO JOURNAL, 2017, 36 (24) : 3573 - 3599