Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction

被引:3
作者
Manawan, Maykel [1 ]
Kartini, Evvy [2 ,3 ]
Avdeev, Maxim [4 ]
机构
[1] Univ Pertahanan Indonesia, Teknol Daya Gerak, Jl Sentul Citeureup, Bogor 16810, West Java, Indonesia
[2] Indonesia Nucl Energy Agcy BATAN, Ctr Sci & Technol Adv Mat, Tangerang 15314, Banten, Indonesia
[3] Natl Battery Res Inst, Commercial Int Sch, Edu Ctr Bldg 2nd Floor Unit 22260,Lot 2 8, Tangerang 15314, Banten, Indonesia
[4] Australian Nucl Sci & Technol Org, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2021年 / 54卷
关键词
neutron diffraction; Rietveld analysis; maximum entropy method; bond valence sum; anisotropic displacement parameters; nuclear density distribution; 3-DIMENSIONAL VISUALIZATION; PERFORMANCE; REFINEMENT; PROGRAM;
D O I
10.1107/S1600576721008700
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all-solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high-resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium-ion diffusion in the crystal structure can be visualized.
引用
收藏
页码:1409 / 1415
页数:7
相关论文
共 50 条
  • [41] Neutron diffraction study of a Rb0.5TI0.5H2PO4 single crystal
    Oh, In-Hwan
    Mattauch, Stefan
    Heger, Gernot
    Lee, Cheol Eui
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (09)
  • [42] Crystal Structure of Li7P3S11 Studied by Neutron and Synchrotron X-ray Powder Diffraction
    Onodera, Yohei
    Mori, Kazuhiro
    Otomo, Toshiya
    Hannon, Alex C.
    Kohara, Shinji
    Itoh, Keiji
    Sugiyama, Masaaki
    Fukunaga, Toshiharu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79
  • [43] Investigation of single crystal structure on Tl2SO4 by neutron diffraction
    Oh, In-Hwan
    Lee, Kwang-Sei
    PHYSICA B-CONDENSED MATTER, 2018, 551 : 6 - 8
  • [44] Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3
    Ben Yahia, H.
    Essehli, R.
    Avdeev, M.
    Park, J-B.
    Sun, Y-K.
    Al-Maadeed, M. A.
    Belharouak, I.
    JOURNAL OF SOLID STATE CHEMISTRY, 2016, 238 : 103 - 108
  • [45] In Situ Studies of Fe4+ Stability in β-Li3Fe2(PO4)3 Cathodes for Li Ion Batteries
    Christiansen, Ane S.
    Johnsen, Rune E.
    Norby, Poul
    Frandsen, Cathrine
    Morup, Steen
    Jensen, Soren H.
    Hansen, Kent K.
    Holtappels, Peter
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) : A531 - A537
  • [46] Elucidating the local structure of Li1+xAlxTi2-x(PO4)3 and Li3AlxTi2-x(PO4)3 (x=0, 0.3) via total scattering
    Chambers, Matthew S.
    Liu, Jue
    Borkiewicz, Olaf J.
    Llopart, Kevin
    Sacci, Robert L.
    Veith, Gabriel M.
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (21): : 7648 - 7666
  • [47] Hydrothermal Synthesis and Crystal Structure of Lithium Scandium Orthophosphate Li2Sc[H(PO4)2]. The Li2MIII[H(PO4)2] Family (MIII = Fe, Sc, In)
    Filaretov, A. A.
    Rusakov, D. A.
    Simonov, S. V.
    Khasanov, S. S.
    Komissarova, L. N.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (11) : 1750 - 1762
  • [48] Structure and lithium mobility of Li4Pt3Si
    Dinges, Tim
    Hoffmann, Rolf-Dieter
    van Wuellen, Leo
    Henry, Paul
    Eckert, Hellmut
    Poettgen, Rainer
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (02) : 237 - 243
  • [49] Structural evolution of NASICON-type Li1+xAlxGe2-x(PO4)3 using in situ synchrotron X-ray powder diffraction
    Safanama, Dorsasadat
    Sharma, Neeraj
    Rao, Rayavarapu Prasada
    Brand, Helen E. A.
    Adams, Stefan
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) : 7718 - 7726
  • [50] The crystal structure of δ-Al(OH)3: Neutron diffraction measurements and ab initio calculations
    Matsui, Masanori
    Komatsu, Kazuki
    Ikeda, Emi
    Sano-Furukawa, Asami
    Gotou, Hirotada
    Yagi, Takehiko
    AMERICAN MINERALOGIST, 2011, 96 (5-6) : 854 - 859