Visualizing lithium ions in the crystal structure of Li3PO4 by in situ neutron diffraction

被引:3
作者
Manawan, Maykel [1 ]
Kartini, Evvy [2 ,3 ]
Avdeev, Maxim [4 ]
机构
[1] Univ Pertahanan Indonesia, Teknol Daya Gerak, Jl Sentul Citeureup, Bogor 16810, West Java, Indonesia
[2] Indonesia Nucl Energy Agcy BATAN, Ctr Sci & Technol Adv Mat, Tangerang 15314, Banten, Indonesia
[3] Natl Battery Res Inst, Commercial Int Sch, Edu Ctr Bldg 2nd Floor Unit 22260,Lot 2 8, Tangerang 15314, Banten, Indonesia
[4] Australian Nucl Sci & Technol Org, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2021年 / 54卷
关键词
neutron diffraction; Rietveld analysis; maximum entropy method; bond valence sum; anisotropic displacement parameters; nuclear density distribution; 3-DIMENSIONAL VISUALIZATION; PERFORMANCE; REFINEMENT; PROGRAM;
D O I
10.1107/S1600576721008700
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li3PO4 is known to demonstrate Li+ ionic conductivity, making it a good candidate for solid electrolytes in all-solid batteries. Understanding the crystal structure and its connection to Li+ diffusion is essential for further rational doping to improve the ionic transport mechanism. The purpose of this study is to investigate this mechanism using anisotropic displacement parameters (ADPs), nuclear density distribution and bond valence mapping. In situ neutron powder diffraction experiments have been performed using the high-resolution powder diffractometer ECHIDNA at the OPAL reactor, Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, NSW, Australia. The ADPs and nuclear density distribution were determined from the analysis of neutron diffraction data using the Rietveld method, whereas the bond valence map was calculated from the refined structure. The crystal structure remained unchanged as the temperature was increased (3, 100, 300 and 400 K). However, the ADPs show a greater increase in anisotropy in the a and b axes compared with the c axis, indicating the tendency of the ionic movement. By combining nuclear density distribution and bond valence mapping, the most likely lithium-ion diffusion in the crystal structure can be visualized.
引用
收藏
页码:1409 / 1415
页数:7
相关论文
共 50 条
  • [1] Neutron diffraction study on Li3PO4 solid electrolyte for lithium ion battery
    Kartini, Evvy
    Manawan, Maykel
    Collins, Malcolm F.
    Avdeev, Maxim
    PHYSICA B-CONDENSED MATTER, 2018, 551 : 320 - 326
  • [2] Magnetic Properties of Li3V2(PO4)3/Li3PO4 Composite
    Gavrilova, Tatiana
    Khantimerov, Sergey
    Cherosov, Mikhail
    Batulin, Ruslan
    Lyadov, Nickolay
    Yatsyk, Ivan
    Deeva, Yulia
    Turkin, Denis
    Chupakhina, Tatiana
    Suleimanov, Nail
    MAGNETOCHEMISTRY, 2021, 7 (05)
  • [3] Ex situ NMR and neutron diffraction study of structure and lithium motion in Li7MnN4
    Cabana, J
    Dupré, N
    Rousse, G
    Grey, CP
    Palacín, MR
    SOLID STATE IONICS, 2005, 176 (29-30) : 2205 - 2218
  • [4] Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction
    Yashima, M
    Sakai, A
    Kamiyama, T
    Hoshikawa, A
    JOURNAL OF SOLID STATE CHEMISTRY, 2003, 175 (02) : 272 - 277
  • [5] Structure refinement of lithium ion conductors Li3Sc2(PO4)3 and Li3-2x(Sc1-xMx)2(PO4)3 (M = Ti, Zr) with x = 0.10 by neutron diffraction
    Suzuki, T
    Yoshida, K
    Uematsu, K
    Kodama, T
    Toda, K
    Ye, ZG
    Ohashi, M
    Sato, M
    SOLID STATE IONICS, 1998, 113 : 89 - 96
  • [6] Crystal Structure of LiH2PO4 Studied by Single-Crystal Neutron Diffraction
    Oh, In Hwan
    Lee, Kwang-Sei
    Meven, Martin
    Heger, Gernot
    Lee, Cheol Eui
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [7] Reversible lithium intercalation in a lithium-rich layered rocksalt Li2RuO3 cathode through a Li3PO4 solid electrolyte6
    Zheng, Yueming
    Hirayama, Masaaki
    Taminato, Sou
    Lee, Soyeon
    Oshima, Yoshifumi
    Takayanagi, Kunio
    Suzuki, Kota
    Kanno, Ryoji
    JOURNAL OF POWER SOURCES, 2015, 300 : 413 - 418
  • [8] Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study
    Arbi, K.
    Hoelzel, M.
    Kuhn, A.
    Garcia-Alvarado, F.
    Sanz, J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) : 18397 - 18405
  • [9] A mixed α/β superstructure in NASICON ionic conductors:: Neutron diffraction study of Li2FeTi(PO4)3 and Li2FeZr(PO4)3
    Catti, M
    JOURNAL OF SOLID STATE CHEMISTRY, 2001, 156 (02) : 305 - 312
  • [10] REEVALUATION OF THE CRYSTAL-STRUCTURE OF LITHIUM ZIRCONIUM NITRIDE, LI2ZRN2, BY NEUTRON POWDER DIFFRACTION
    NIEWA, R
    JACOBS, H
    MAYER, HM
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1995, 210 (07): : 513 - 515