Low regularity for the fifth order Kadomtsev-Petviashvili-I type equation

被引:4
作者
Guo, Boling [1 ]
Huo, Zhaohui [2 ]
Fang, Shaomei [3 ]
机构
[1] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[2] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] South China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
关键词
Well-posedness; Fifth order Kadomtsev-Petviashvili-I equation; Dyadic X-s; X-b spaces; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; SOBOLEV SPACES;
D O I
10.1016/j.jde.2017.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cauchy problem of the fifth order Kadomtsev-Petviashvili-I equation (fifth-KP-1) partial derivative(t)u + partial derivative(5)(x)u +/- partial derivative(3)(x)u - partial derivative(-1)(x)partial derivative(yy)u+partial derivative(x)(u(2)) = 0, (x, y, t) epsilon R-3; is considered. It follows that the fifth order Kadomtsev-Petviashvili-I equation (0.1) is locally well -posed in H-s,H-O with s >= -3/4, where the norm H-s,H-r is defined by ||f || H-(x.y)(s,r) = || <xi >(s) <zeta >(r) (f) over cap|| L-(xi,zeta)(2) . (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:5696 / 5726
页数:31
相关论文
共 27 条
[1]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P315
[3]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[4]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[5]   Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves [J].
DeBouard, A ;
Saut, JC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (05) :1064-1085
[6]   On the local regularity of the KP-I equation in anisotropic Sobolev space [J].
Guo, Zihua ;
Peng, Lizhong ;
Wang, Baoxiang .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (04) :414-432
[7]   Global well-posedness of the KP-I initial-value problem in the energy space [J].
Ionescu, A. D. ;
Kenig, C. E. ;
Tataru, D. .
INVENTIONES MATHEMATICAE, 2008, 173 (02) :265-304
[8]   Global well-posedness of the Benjamin-Ono equation in low-regularity spaces [J].
Ionescu, Alexandru D. ;
Kenig, Carlos E. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :753-798
[9]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[10]   DYNAMICS OF 2-DIMENSIONAL SOLITONS IN WEAKLY DISPERSIVE MEDIA [J].
KARPMAN, VI ;
BELASHOV, VY .
PHYSICS LETTERS A, 1991, 154 (3-4) :131-139