Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations

被引:28
作者
Balasubramaniam, P. [1 ]
机构
[1] Gandhigram Rural Inst, Dept Math, Dindigul 624302, Tamil Nadu, India
关键词
Controllability; Fractional calculus; Fixed point theorem; Noninstantaneous impulse; Semigroup; APPROXIMATE CONTROLLABILITY; DERIVATIVES; EXISTENCE; SYSTEMS;
D O I
10.1016/j.chaos.2021.111276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the necessary and sufficient conditions are derived for the controllability of AtanganaBaleanu-Caputo (ABC) neutral fractional differential equations (FDEs) with noninstantaneous (NI) impulses. The main controllability result is obtained by using the concept of measure of noncompactness, semigroup, fractional calculus, and K-set contraction principle. An illustration is provided to validate the established theoretical result. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions [J].
Agarwal, Ravi ;
Hristova, S. ;
O'Regan, D. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (07) :3097-3119
[2]   Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay [J].
Aimene, D. ;
Baleanu, D. ;
Seba, D. .
CHAOS SOLITONS & FRACTALS, 2019, 128 :51-57
[3]  
Al-Salti N, 2016, PROG FRACT DIFFER AP, V2, P257, DOI [DOI 10.18576/PFDA/020403, DOI 10.18576/PFDA/020403.]
[4]  
[Anonymous], 2014, Int. J. Nonlinear Sci.
[5]  
[Anonymous], 2019, Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, DOI DOI 10.1007/978-3-030-11662-011
[6]   Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order [J].
Atangana, Abdon ;
Koca, Ilknur .
CHAOS SOLITONS & FRACTALS, 2016, 89 :447-454
[7]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[8]   Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel [J].
Bahaa, G. M. ;
Hamiaz, Adnane .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[9]  
Bajlekova EG., 2001, THESIS U PRESS FACIL
[10]   APPROXIMATE CONTROLLABILITY OF IMPULSIVE FRACTIONAL INTEGRO-DIFFERENTIAL SYSTEMS WITH NONLOCAL CONDITIONS IN HILBERT SPACE [J].
Balasubramaniam, P. ;
Vembarasan, V. ;
Senthilkumar, T. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (02) :177-197