On global solvability and asymptotic behaviour of a mixed problem for a nonlinear degenerate Kirchhoff model in moving domains

被引:14
作者
Cavalcanti, MM
Cavalcanti, VND
Ferreira, J
Benabidallah, R
机构
[1] State Univ Maringa UEM, Dept Math, BR-87020900 Maringa, Parana, Brazil
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
Kirchhoff model; moving boundary; asymptotic behaviour;
D O I
10.36045/bbms/1054818022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the existence, uniqueness and asymptotic behaviour of global regular solutions of the mixed problem for the Kirchhoff nonlinear model given by the hyperbolic-parabolic equation (rho(1)u(t))(t) + rho(2)u(t) - M (t, integral (beta(t))(alpha(t)) \u(x)\(2)dx) u(xx) = f in (Q) over cap, where (Q) over cap = {(x, t) is an element of R-2\ alpha(t) < x < beta(t)(-), 0 < t < infinity} is a noncylindrical domain of R-2 and beta(.), alpha(.) are positive functions such that lim t --> infinity (beta(t) - alpha(t)) +infinity; The real function M(., .) is such that M(t, lambda) greater than or equal to m(0) > 0 For All(t, lambda) is an element of [0, infinity] x [0, infinity], while rho(1)(.), rho(2)(.) are given functions which satisfy some appropriate conditions.
引用
收藏
页码:179 / 196
页数:18
相关论文
共 18 条
[1]  
AROSIO A, 1984, NONLINEAR PARTIAL DI, V6
[2]   On hyperbolic-parabolic equations with nonlinearity of Kirchhoff-Carrier type in domains with moving boundary [J].
Benabidallah, R ;
Ferreira, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (03) :269-287
[3]  
Bensoussan A., 1976, PERTURBATION AUGMENT
[4]  
Bisognin E., 1995, REV MAT COMPLUT, V8, P401
[5]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[6]  
Cavalcanti MM., 2001, Adv. Differ. Equ, V6, P701
[8]   LOCAL SOLUTIONS FOR A NONLINEAR DEGENERATE HYPERBOLIC EQUATION [J].
EBIHARA, Y ;
MEDEIROS, LA ;
MIRANDA, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :27-40
[9]  
FERREIRA J, 1996, PORT MATH, P381
[10]   YOSIDA APPROXIMATION AND NONLINEAR HYPERBOLIC EQUATION [J].
IKEHATA, R ;
OKAZAWA, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (05) :479-495