Semicircle Law for a Matrix Ensemble with Dependent Entries

被引:17
作者
Hochstaettler, Winfried [1 ]
Kirsch, Werner [1 ]
Warzel, Simone [2 ]
机构
[1] Fernuniv, Fak Math & Informat, Hagen, Germany
[2] Tech Univ Munich, Zentrum Math, Munich, Germany
关键词
Random matrices; Semicircle law; Curie-Weiss model;
D O I
10.1007/s10959-015-0602-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study ensembles of random symmetric matrices whose entries exhibit certain correlations. Examples are distributions of Curie-Weiss type. We provide a criterion on the correlations ensuring the validity of Wigner's semicircle law for the eigenvalue distribution measure. In case of Curie-Weiss distributions, this criterion applies above the critical temperature (i.e., ). We also investigate the largest eigenvalue of certain ensembles of Curie-Weiss type and find a transition in its behavior at the critical temperature.
引用
收藏
页码:1047 / 1068
页数:22
相关论文
共 23 条
[1]  
Anderson Greg W, 2010, INTRO RANDOM MATRICE
[2]  
[Anonymous], 1999, Enumerative Combinatorics
[3]  
[Anonymous], 1985, Ecole d'Ete de Probabilites de Saint-Flour XIII
[4]  
[Anonymous], 1973, Russ. Math. Surv., DOI 10.1070/RM1973v028n01ABEH001396
[5]  
[Anonymous], 2010, SPRINGER SER STAT
[6]   WIGNERS SEMICIRCLE LAW FOR EIGENVALUES OF RANDOM MATRICES [J].
ARNOLD, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03) :191-&
[7]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[8]   Spectral measure of large random Hankel, Markov and Toeplitz matrices [J].
Bryc, W ;
Dembo, A ;
Jiang, TF .
ANNALS OF PROBABILITY, 2006, 34 (01) :1-38
[9]   A generalization of the Lindeberg principle [J].
Chatterjee, Sourav .
ANNALS OF PROBABILITY, 2006, 34 (06) :2061-2076
[10]  
de Finetti B., 1931, ATTI R ACAD N 6 SFMN, V4, P251